Bio-electricity and Land Use in the Future Agricultural Resources Model (FARM)

Ronald D. Sands

U.S. Department of Agriculture, Economic Research Service, 1400 Independence Ave., SW, Mail Stop 1800, Washington, DC 20250-1800, USA +1 202-694-5535 rsands@ers.usda.gov

Hannah Förster

Öko-Institut, Schicklerstr. 5-7, D-10179 Berlin, Germany

Carol A. Jones

U.S. Department of Agriculture, Economic Research Service, 1400 Independence Ave., SW, Mail Stop 1800, Washington, DC 20250-1800, USA

Katja Schumacher

Öko-Institut, Schicklerstr. 5-7, D-10179 Berlin, Germany

Abstract

Bio-electricity is an important technology for Energy Modeling Forum (EMF-27) mitigation scenarios, especially with the possibility of negative carbon dioxide emissions when combined with carbon dioxide capture and storage (CCS). With a strong economic foundation, and broad coverage of economic activity, computable general equilibrium models have proven useful for analysis of alternative climate change policies. However, embedding energy technologies in a general equilibrium model is a challenge, especially for a negative emissions technology with joint products of electricity and carbon dioxide storage. We provide a careful implementation of bio-electricity with CCS in a general equilibrium context, and apply it to selected EMF-27 mitigation scenarios through 2100. Representing bio-electricity and its land requirements requires consideration of competing land uses, including crops, pasture, and forests. Land requirements for bio-electricity start at 200 kilohectares per terawatt-hour declining to approximately 70 kilohectares per terawatt-hour declining to approximately 70

Keywords: biomass, bio-electricity, land use, carbon dioxide, general equilibrium