The health benefits of developing renewable energy in China towards 2030

Hancheng Dai; Zhang Yanxu; Yang Xie

National Institute for Environmental Studies, Japan; Peking University; Harvard University

AIM workshop 2016; December10-11, 2016, Tsukuba, Japan

Introduction: Study objectives

- Estimate externalities from energy production of fossil fuels;
- Chinese flavour air-pollution simulation model.
- ► Human health impacts of air pollution from the Energy sector in terms of mortality and morbidity.
- Costs and benefits considering externality cost.
- ► To calculate the True costs of fossil fuels.

Method: Coupling Energy-Emission-Air quality-Health and Economic Models

- EDO and LEAP model from ERI
 - LEAP projects final energy consumption (excl. power) in China,
 - ► EDO projects power demand and SO2 & NOx in 30 provinces of China.
- Emission calculator calculates primary emissions in 30 provinces.
- GEOS-chem model simulates air quality (PM2.5 and Ozone concentration).
- Health model quantifies health impacts.
- Economic models (CGE and valuation) monetize the health impacts, which has been used widely for assessing China's climate mitigation at the

Air quality assessment						
EDO/LEAP model		Emission calculator		tor	GEOS	CHEM Model
Energy use Emission [SO2, NOx power sector]		Primary emission [SO ₂ , NO _x , CH ₄ , PM _{2.5} , CO, NMVOC]			Concentration PM _{2.5} /O ₃	
Health Model						
	ality • Labor loss idity • Medical cost			ss cost		
E conomic assessment						
CGE Model		Cost Benefit Analysis				
		alevent and Multiplier in DDD is				

► The per capita expenditure in 2030 is about 185.7 in Stated Policy scenario and 158.7 thousand in High RE scenario

Figure: Scenario matrix.

Scenario

Two scenarios are constructed:

- **Stated Policy** Reference scenario.
 - ▶ The current ambitions for RE development correspond to minimum requirements for fulfilling the energy and environmental goals set for China to achieve by 2030.
 - coal is still the dominant fuel.
- **High RE** More renewables.
 - Differs from the Stated Policy scenario with the amount of new wind and solar PV capacity and with the degree of electrification in the end-use sector.

The core message is how RE development benefits air pollution control and health improvements.

Results

Power generation under two scenarios.

Emissions of air pollutant

under two scenarios.

scenario 📕 Stated Policy 📒 High RE

Sources: Quantified by the Health model

scenario Stated Policy High RE

Sources: Quantified by the Health model

► The total national mortality in 2030 is about 1314.3 in Stated Policy scenario and 1027.8 thousand in High RE scenario

Compare emissions from total with MEIC inventory

Concentration of PM2.5 and ozone.

- Provincial disparity of health impacts.
- Cost and benefits of developing renewable energy.

Discussion and Conclusion

- ▶ We quantified the physical and monetary health benefits of developing RE in China.
- ► In 2030, RE development could:
- ► Save 286 thousand people from pemature death.
- ► Life value worths 1200 billion Yuan, 1.2% of GDP.
- ▶ 1.16 hour more work time, increasing ca. 0.1% of GDP.
- ► When external cost of fossil energy is considered, RE could be cost competitive.

Acknowledgements

This work is supported by China Renewable Energy Center as part of China Renewable Energy Outlook 2016

References & Selected publication

- Beibei Cheng, Hancheng Dai, Peng Wang, Yang Xie, Li Chen, Daiqing Zhao, and Toshihiko Masui. "Impacts of low-carbon mitigation in Guangdong Province, China". In: Energy Policy 88 (2016), pages 515–527.
- Beibei Cheng, Hancheng Dai, Peng Wang, Daiqing Zhao, and Toshihiko Masui. "Impacts of carbon trading scheme on air pollutant emissions in Guangdong Province of China". In: Energy for Sustainable Development 27 (2015), 2 pages 174-185.
- Hancheng Dai. "Integrated assessment of China's provincial low carbon economy development towards 2030: Jiangxi province as an example". PhD thesis. 2012. [3]
- Hancheng Dai, Toshihiko Masui, Yuzuru Matsuoka, and Shinichiro Fujimori. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model". In: Energy Policy 39.5 (2011), [4] pages 2875-2887.
- Hancheng Dai, Toshihiko Masui, Yuzuru Matsuoka, and Shinichiro Fujimori. "The impacts of China's household consumption expenditure patterns on energy demand and carbon emissions towards 2050". In: Energy Policy 50 (2012), [5] pages 736-750.
- Hancheng Dai, Xuxuan Xie, Yang Xie, Jian Liu, and Toshihiko Masui. "Green growth: The economic impacts of large-scale renewable energy development in China". In: Applied Energy 162 (2016), pages 435–449. [6]
- Huijuan Dong, Hancheng Dai, Liang Dong, Tsuyoshi Fujita, Yong Geng, Zbigniew Klimont, Tsuyoshi Inoue, Shintaro Bunya, Minoru Fujii, and Toshihiko Masui. "Pursuing air pollutant co-benefits of CO2 mitigation in China: a [7] provincial leveled analysis". In: Applied Energy 144 (2015), pages 165-174.
- Xu Tian, Hancheng Dai, and Yong Geng. "Effect of household consumption changes on regional low-carbon development: A case study of Shanghai". In: China Population, Resources and Environment 26.5 (2016), pages 55–63. 8
- Xu Tian, Yong Geng, Hancheng Dai, Tsuyoshi Fujita, Rui Wu, Zhe Liu, Toshihiko Masui, and Yang Xie. "The effects of household consumption pattern on regional development: A case study of Shanghai". In: Energy 103 (2016), [9] pages 49-60.
- [10] Peng Wang, Hancheng Dai, Songyan Ren, Daiqing Zhao, and Toshihiko Masui. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China". In: Energy 79 (2015),