Asia Low Carbon Society Research Project

27 NOVEMBER 2017 The 23rd AIM International Workshop @ NIES

Kazuya FUJIWARA

Mizuho Information & Research Institute Inc.

Yuki OCHI

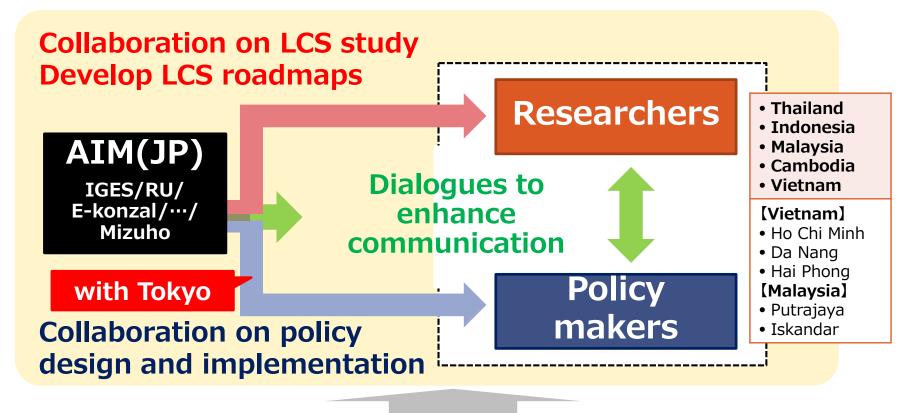
E-konzal

Nguyen Thai HOA

Ritsumeikan University

Junichi FUJINO

Institute for Global Environmental Strategies /National Institute for Environmental Studies


LCS activities in Asia

- AIM has contributed processes to formulate climate policy in Japan, and the activities are expanded to Asia. AIM has been involved in formulation processes of low carbon policies through collaboration with Asian researchers.
- Since FY2014, "Asia Low Carbon Society Research (LCSR) Project" which is funded by MoEJ is launched. The project includes not only making low carbon scenarios but also designing practical programs to realize LCS in target regions.

Asia LCSR Project

- AIM team has collaborated with Asian researchers and policy makers to develop LCS scenarios and roadmaps.
- Practical program for emission reduction targeting building sector has also been designed through collaboration with Tokyo Metropolitan Government.
- Policy dialogues between researchers and policy makers were organized.

Supported by MOEJ

Activities of Asia LCSR project

Components of activities of LCSR project are shown below. Scope and target cities of the activities vary year by year.

LCS Scenario Development

LCS Scenarios Development: Workflow

Procedure and workflow for LCS scenarios development are show as follows.

Procedure

1. Start of the Story

1.1 Formulation of the region's top initiative1.2 Resource allocation and team formulation

2. Framework Setting

- 2.1 Background research
- 2.2 Framework setting

3. Data Preparation

- 3.1 Collection of statistical data and future plan
- 3.2 Estimation of necessary data in base year
- 3.3 Assumption of future change of the society

4. Design of LCS Projects and Projection of Future Scenario

- 4.1 Projection of BaU scenario by quantification tools
- 4.2 Listing of LCS projects
- 4.3 Calculation of emission reduction by project
- 4.4 Projection of LCS policy scenario by quantification tools
- 4.5 Adjustment of project-based emission reduction

5. Bridging the Output to Real World

5.1 Formulation of actions and projects for implementation 5.2 Reporting the result to policy makers

Work and Events

Kick-off meeting Formulate team and decide schedule

Training workshop Learn how to develop LCS scenario

Follow-up meeting Allocate tasks to each member

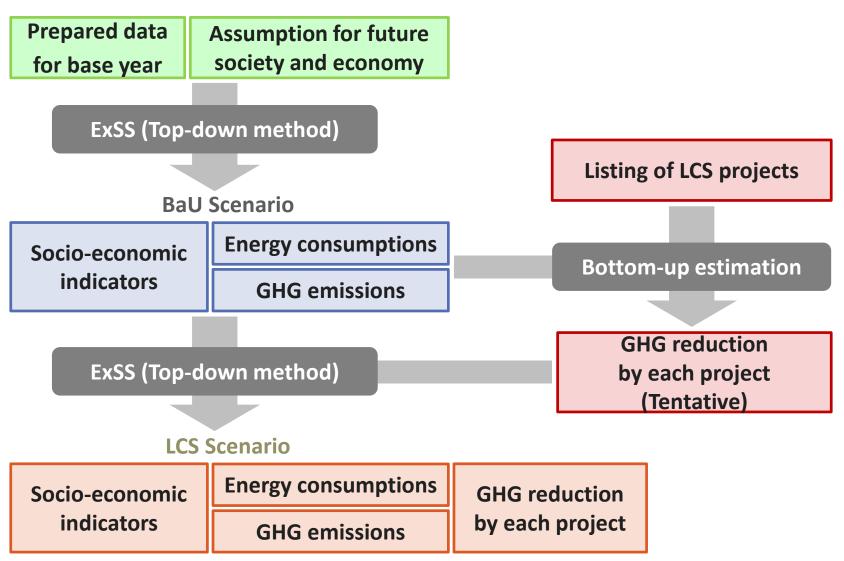
Work

Data collection, modelling and face-to-face discussion with local experts

Technical meeting Present preliminary results and discuss how to improve

Work

Revise the scenario based on advice in the technical meeting


Final workshop

Present a completed scenario to policy makers, experts, enterprises and universities.

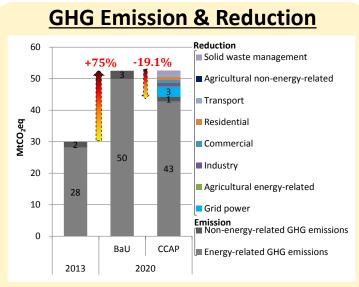
Source: Presentation by Nguen Thai Hoa and Yuki Ochi (Oct. 2017)

LCS Scenarios Development: Workflow

Quantitative analysis to estimate scenarios by ExSS (Extended Snapshot tool).

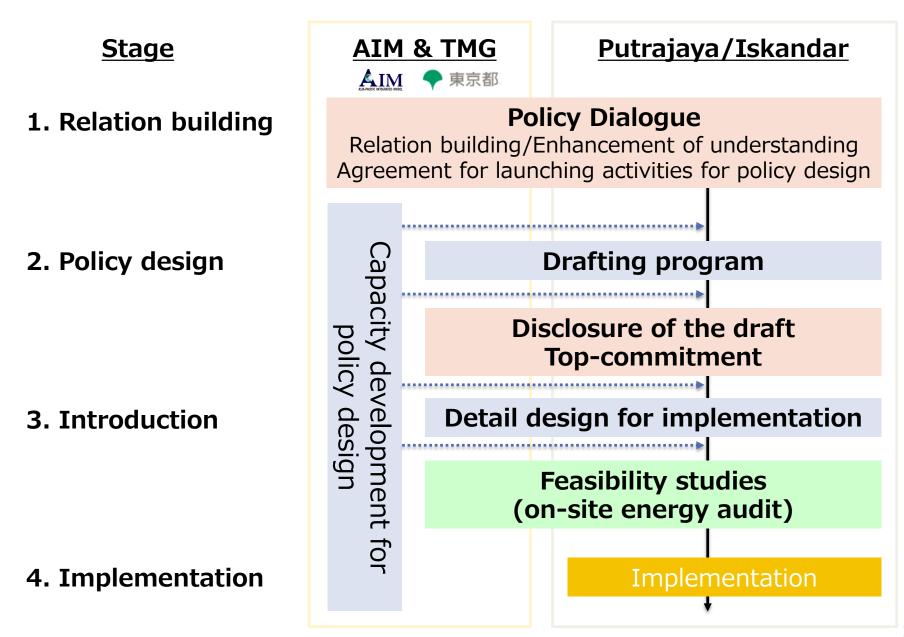
Source: Presentation by Nguen Thai Hoa and Yuki Ochi (Oct. 2017)

Example (Case in Vietnam)


- AIM has supported to develop LCS plans in Ho Chi Minh, Da Nang and Hai **Phong cities**. GHG reduction potential and possible countermeasures towards 2030 are identified based on quantitative analysis by AIM/ExSS.
- LCS plans were developed through collaborative works and discussions with counterparts.

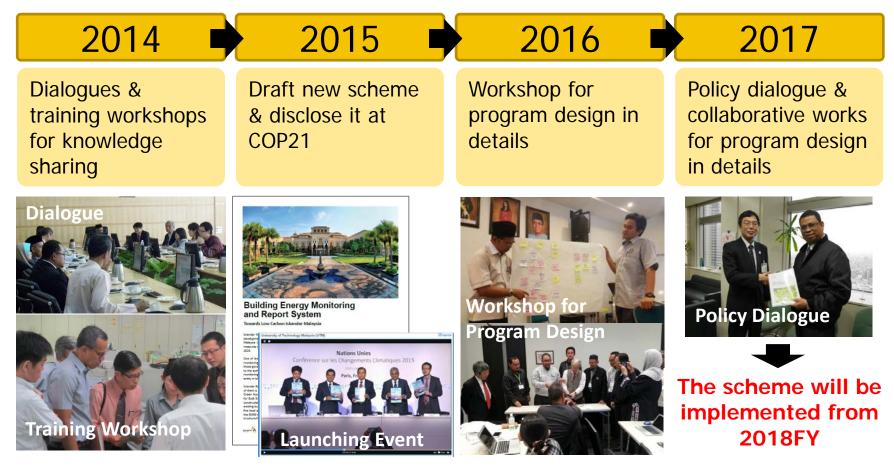
GHG Reduction by Projects

Catego code	y Project category	Project code	Project name	Effort	Sector	Emission
1	Land-use	1-3	Afforestation and greening (parks, roads, pedestrian spaces, riparian and coastal areas)	Intern al	CO ₂ absorption	333.7
	planning		Build wind channels (green corridors)	External	Commercial	0.2
	P0		TOTAL (I)			333.9
И	Energy	⊪-1	Energy efficiency technology applied to buildings	Intern al	Commercial	55.2
		II-2	ESCO (Energy Saving COmpany) Project	External	Total II-2	1,123.7
		11-2	ESCO (En ergy Saving COmpany) Project for commercial buildings	External	Commercial	233.5
		11-2	ESCO (En ergy Saving COmpany) Project for industries	External	Industry	890.2
		II-3	High Efficiency Lightin g	Intern al	Total II-3	688.1
		11-3	High Efficiency Lighting in public lighting	Internal	public lighting	3.9
		11-3	High Efficiency Lighting in commercial buildings	Internal	Commercial	397.3
		11-3	High Efficiency Lighting in households	Internal	Residential	287.0
		II-4	High Efficiency Air Conditioners (such as Air Conditioners with Inverter Controllers)	Intern al	Total II-4	176.1
		11-4	High Efficiency Air Conditioners (such as Air Conditioners with Inverter Controllers) in commercial buildings	Internal	Commercial	47.7
		11-4	High Efficiency Air Conditioners (such as Air Conditioners with Inverter Controllers) in households	Internal	Residential	128.4
		II-5	Energy Efficiency Improvement Facilities to be installed at Small/M edium Enterprises (Compressors, Motors)	Intern al	Industry	603.6
		II-6	Introduction of Photovoltaic Power Generation	Intern al	Total II-6	6.4
		11-6	Introduction of Photovoltaic Power Generation to commercial buildings	Internal	Commercial	3.5
		11-6	Introduction of Photovoltaic Power Generation to households	Internal	Residential	2.5
		⊪-7	Introduction of Solar Water Heater	Intern al	Total II-7	315.0
		II-7	Introduction of Solar Water Heater to commercial buildings	Internal	Commercial	199.6
		II-7	Introduction of Solar Water Heater to households	Internal	Residential	115.4
		II-8	Installation of Energy Saving Glasses	External	Total II-8	129.5
		11-8	Installation of Energy Saving Glasses to commercial buildings	External	Commercial	80.1
		11-8	Installation of Energy Saving Glasses to households	External	Residential	49.4
		II-9	Region al Energy Supply System	External	Industry	301.3
		II-10	Introduction of Small-scale Hydropower Generation (at water distribution stations, can als)	External	Commercial	1.4
		⊪-11	Introduction of Wind Power Generation	External	Commercial	8.1
			Descention of an array officiant analiances	Intom al	Decidential	276.2
						1.3
Total GHG emissions reduction potential in 2020CCAP						10,057.9


Program Design through Collaboration with TMG

Policy Design: Concept

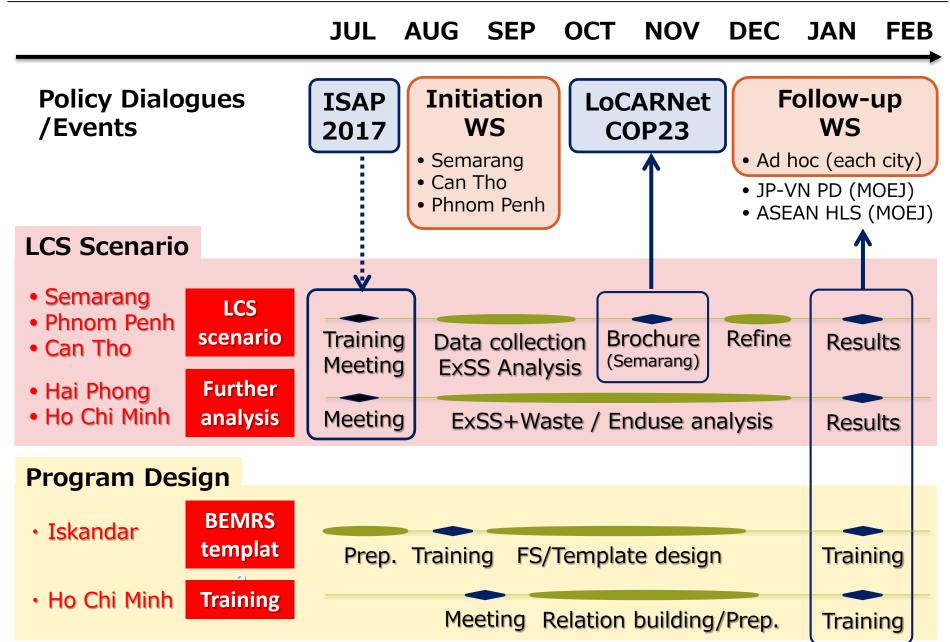
- Local authorities in Malaysia (Putrajaya, Iskandar) completed LCS scenario development through collaborative work with AIM (supported by MOEJ, JICA/ SATREPS)
- Both of the cities are now moving on to implementation of the LCS plans to realize low carbon society.



Policy Design: Workflow

Example (Case in Malaysia)

- AIM team has collaborated with both cities (Putrajaya and Iskandar) to design monitoring and reporting program since 2014.
- Trainings, workshops and intensive discussions among city staffs, TMG staffs and AIM experts have been conducted for many times.


Example (Case in Malaysia)

- Iskandar authority drafted the Building Energy Monitoring and Reporting System: BEMRS by referring policy action implemented in Tokyo.
- The authority is conducting energy audit program as pilot phase of BEMRS. The program will be started in next year targeting governmental buildings.

Activities in FY2017 and Future Plans

Activities in FY2017

Expand target regions

- Prospected cities in FY2018
 - > Hanoi and Quezon: LCS scenario development
 - > HCMC: policy design & implementation.

Further analysis of LCS scenario

- Analysis on not only energy sector but also other sectors are required in ASEAN cities.
- Cost analysis is also required to policy processes in not only target cities but also Japan to find actual project.

Support on policy design and implementation

- Sharing knowledge/experiences of policy design with ASEAN cities (other than Iskandar and Putrajaya)
- Co-work on policy implementation (BEMRS in Iskandar)

Thank you for your attention!