The 23rd AIM International Workshop Ohyama Memorial Hall, NIES 27-29 November 2017

## GHGs, SLCPs, Air Pollutants Mitigation Scenarios in Asia and World - Cobenefits and Tradeoffs of Low Carbon Measures -

Tatsuya HANAOKA

Center for Social and Environmental Systems National Institute for Environmental Studies Japan





#### MOEJ-S12: Promotion of climate policies by assessing environmental impacts of SLCP and seeking LLGHG emission pathways (FY2014 – FY2018)



NIES JAPAN

1

# MOEJ-S12: Promotion of climate policies by assessing environmental impacts of SLCP and seeking LLGHG emissions pathways (FY2014-FY2018)



## **Objectives**

This study analyses appropriate balanced emissions pathways of GHGs, air pollutants, short-lived climate pollutants (SLCPs) while taking GHG mitigation actions for achieving 2 °C target

- estimation of technological mitigation potentials and costs of the Kyoto basket of greenhouse gases (GHGs) such as CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O, HFCs, PFCs and SF<sub>6</sub>
- 2. How large **cobenefits in reducing of SLCPs and air pollutants** due to effects of different LCS measures equivalent to 2°C
- 3. How large **tradeoffs of increasing SLCPs and air pollutants** due to effects of different LCS measures equivalent to 2°C
- 4. How large **effects of air pollutant control measures** in addition to different LCS measures equivalent to 2°C
- 5. How large effects of promoting electrification in transport sector and building sector







GHG

Well Mixed

Gases

Short Lived

Precursors

pup

Aerosols

Others

If reducing only NOx, atmospheric  $CH_4$  concentration will increase. But if reducing NOx and CO at the same time, atmospheric  $CH_4$  concentration will not increase

#### Seeking for

 combination of NOx and CO reduction,
 Balancing SO<sub>2</sub> and BC reduction at the same time of decarbonization toward 2°C 4

## Scenario Settings- Seeking for balance of GHGs, SLCPs, air pollutants-

| Scenario                     | Overview                                                                                                                                                                                                                                                           |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Reference (=SSP2)            | Reference scenario that future mitigation polices & technologies are in the current trends                                                                                                                                                                         |
| EoP Max                      | 100 % end-of-pipe diffusion across the world by 2050 for SO <sub>2</sub> , NOx, BC, OC, PM <sub>2.5</sub> , PM <sub>10</sub>                                                                                                                                       |
| EoP Mid                      | <b><u>100% EoP diffusion in developed countries &amp; 50% EoP diffusion in developing courtiers by</u></b><br><b><u>2050</u> for SO<sub>2</sub>, NOx, BC, OC, PM<sub>2.5</sub>, PM<sub>10</sub></b>                                                                |
| 2D-EoPmax- <b>RES</b>        | Decarbonization toward 2°C target / maximum EoP measures /<br>energy shift to renewables rather than fossil fuel with CCS                                                                                                                                          |
| 2D-EoPmid- <b>RES</b>        | Decarbonization toward 2°C target / medium EoP measures /<br>energy shift to renewables rather than fossil fuel with CCS                                                                                                                                           |
| 2D-EoPmid-CCS                | Decarbonization toward 2°C target / medium EoP measures /<br>energy shift to coal & biomass power with CCS rather than renewables                                                                                                                                  |
| 2D-EoPmax- <b>RES</b> BLD    | Decarbonization toward 2°C target / maximum EoP measures / <b>energy shift to renewables</b> / <b>100% electrification in building sector across the world by 2050</b>                                                                                             |
| 2D-EoPmid-CCSBLD             | Decarbonization toward 2°C target / medium EoP measures /energy shift to coal & biomass<br>power with CCS / 100% electrification in building sector across the world by 2050                                                                                       |
| 2D-EoPmax- <b>RES</b> TRT    | Decarbonization toward 2°C target / maximum EoP measures / <b>energy shift to renewables</b> / nearly <b>100% EV in passenger transport sector across the world by 2050</b>                                                                                        |
| 2D-EoPmid- <b>RES</b> TRT    | Decarbonization toward 2°C target / medium EoP measures / <b>energy shift to renewables</b> / nearly <b>100% EV in passenger transport sector across the world by 2050</b>                                                                                         |
| 2D-EoPmax- <b>RES</b> BLDTRT | Decarbonization toward 2°C target / maximum EoP measures / <b>energy shift to renewables</b> /<br><b>100% electrification in building sector across the world by 2050</b> / nearly <b>100% EV in passenger</b><br><b>transport sector across the world by 2050</b> |
| 2D-EoPmid-RESBLDTRT          | Decarbonization toward 2°C target / medium EoP measures / energy shift to renewables /<br>100% electrification in building sector across the world by 2050/ nearly 100% EV in passenger<br>transport sector across the world by 2050                               |

There are various different combinations of decarbonization measures which can achieve the similar CO<sub>2</sub> emission pathways equivalent to 2 degree target.



Emissions pathways of SLCPs and air pollutants are different due to combinations of low-carbon and end-of-pipe measures, even if CO<sub>2</sub> emission pathways equivalent to 2°C are similar.



- 100% electrification in building sector is effective for reducing BC, PM2.5 drastically and CO
  100% EV in passenger transport is effective for reducing NMVOC largely and NOx
- Coal for power and industry plants with CCS has emission rebounds for SO<sub>2</sub> and NOx



After enhancing renewables, effects of diffusing End-of-Pipe measures are very limited
 Combinations of renewables with 100% electrification in building and transport sector have effective for drastically reducing BC, PM2.5 and largely reducing NMVOC and CO.



### **Diagnosis of Emissions Pathways Directions** - reduction ratio among GHGs, SLCPs and Air pollutions -

Need to seek for balancing health benefits (e.g. reducing PM<sub>2.5</sub>, BC, SO<sub>2</sub>, NOx), climate benefits (e.g. reducing CO<sub>2</sub>, BC, CH<sub>4</sub>), and climate disadvantage (e.g. reducing OC, SO<sub>2</sub>, NOx, VOC).



## Emissions under decarbonization and air quality control - Example in India -

- **D**ecarbonization measures provide  $SO_2$  emission abatement as a co-benefit.
- Decarbonization measures have a impact on BC reductions, but the amount of the BC reduction is limited, because the increase of biomass is cheaper than electrification in building sector.
- Diffusion of drastic End-of-Pipe measures have large impacts on reducing SO<sub>2</sub>



## Mitigation Costs of decarbonization and air quality control - Example in India -

the cost of diffusing air pollution control measures can be saved by introducing decarbonization measures, which can be regarded as "cost co-benefits".





Source) Hirayama, et al (2017), Analysis on Ancillary Effects of Climate Change Mitigation Actions on Air Pollutants and SLCP: Case study in India, Environmental Systems Research

### Mitigation Costs of achieving INDC target - Example of residential sector in 31 provincial analysis in China -

Emission profiles of CO<sub>2</sub>, BC, PM<sub>2.5</sub> and SO<sub>2</sub>, and energy compositions of coal, biomass, gas, heat and electricity are largely different among urban / rural, depend on large / small provinces. Carbon prices in residential sector range from 44 - 58 US\$/tCO<sub>2</sub> for achieving the INDC target 

Carbon price in residential sector to achieve INDC



**Regional gas emissions** 

Year



Emission (Kt)

Source) Xing R et al. (2017), Achieving China's Intended Nationally Determined Contribution: Role of the Residential Sector, Journal of Cleaner Production, doi: 10.1016/j.jclepro.2017.11.114



## ご清聴ありがとうございました Thank you for your attention

Asia-Pacific Integrated Model http://www-iam.nies.go.jp/aim/index.html

