

November 27, 2017 | 23rd AIM International Workshop | NIES

Meta-analysis and comparison of Japanese and German mid-century deep decarbonization scenarios

Sascha Samadi, Wuppertal Institute

Background

We are currently analysing and comparing Japanese (JP) and German (GER) mid-century bottom-up decarbonization scenarios.

> Our key research questions are:

- What will be key strategies to achieve deep decarbonization?
- What strategies will likely be similar in JP & GER?
- How may individual strategies differ between JP & GER?
- > Based on our ongoing analysis, we aim to contribute to:
 - An exchange of ideas and visions for deep decarbonization
 - Identifying promising areas for (stronger) cooperation between JP & GER in the area of energy systems research

Study	Year	Commissioned by	Prepared by	Scenario(s) chosen	
JAPAN					
Long-term scenarios for	2017	WWF Japan	Research Institute	Bridge	
decarbonising Japan			for Systems Technology	100% RE	
A joint analysis of Japan's INDC	2015	EU	NIES	LowNUC	
A sustainable energy outlook for Japan	2011	Greenpeace International, EREC	DLR (GER), ISEP (JP)	AE[R]	
GERMANY					
Successful energy transition ()	2017	-	J. Nitsch (formerly DLR)	K17 M	
Climate Protection Scenario	2015	BMUB	Öko-Institut,	KS 80	
2050			Fraunhofer ISI	KS 95	
Development of Energy Markets – Energy Reference Forecast,	2014	BMWi	Prognos, EWI, GWS	ZS	
Germany in 2050 – a greenhouse gas-neutral country	2014	-	UBA	THGND	

3

DEMAND SIDE	•	Energy efficiency improvements
	•	Behavioural changes
	•	Electrification
		Direct electrification
		Indirect electrification (e.g. hydrogen)
	•	Use of carbon-free energy sources
		Renewables for electricity generation
		Renewables for transport and heating
Ш		Nuclear power
SIL	•	Import of carbon-free energy sources
ΡĽ		Biomass
SUPPLY SIDE		Electricity
		Hydrogen / Synthetic fuels
	•	Use of CCS technology
		For emissions from power plants
		For emissions from industrial plants

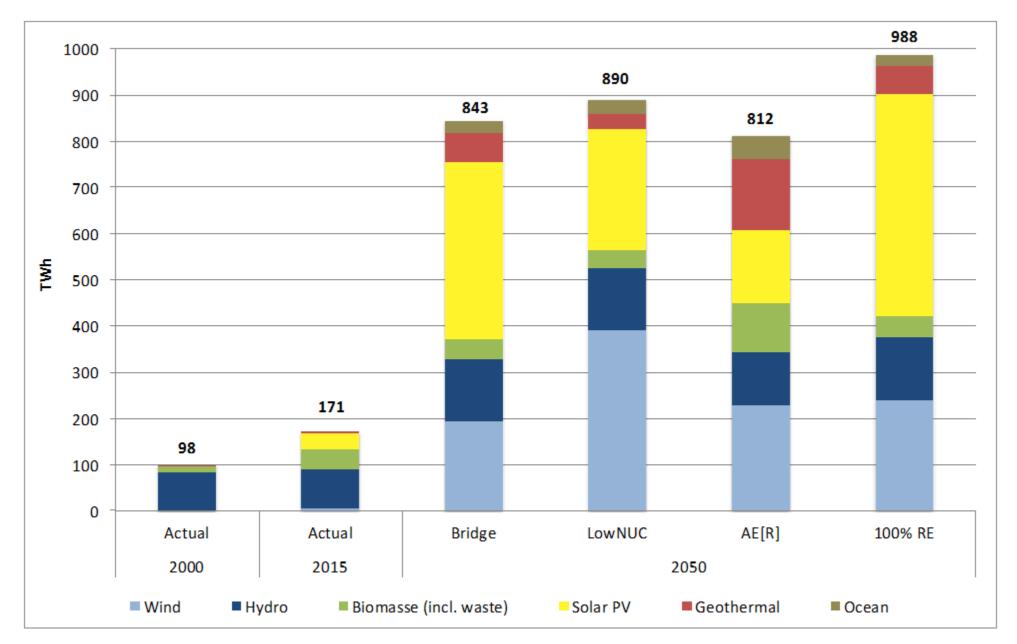
Key energy system decarbonization strategies and how they are pursued in <u>Japanese</u> energy scenarios by 2050

100% RE	AE[R]	LowNUC	Bridge	Scenarios →		
0 t	1.4 t	1.9 t	2.0 t	D energy-related per capita GHG emissions \rightarrow	2050	
++	+++	+++	++	└── Energy efficiency improvements		
+	+	0	+	Behavioural changes	• SIDE	
				Electrification	•	
+	+++	+++	Ŧ	Direct electrification	Ž	
+++	+	+	++	Indirect electrification (e.g. hydrogen)	۵	
				Use of carbon-free energy sources	•	
+++	++	++	++	Renewables for electricity generation		
++ 77	+++	+	++	Renewables for transport and heating		
0	0	0	0	Nuclear power	SIDE	
22				Import of carbon-free energy sources		
??	0	0	0	Biomass		
0	0	0	0	Electricity		
0	0	0	0	Hydrogen / Synthetic fuels	် က	
				Use of CCS technology	•	
0 22	0	++	0	For emissions from power plants		
0	0	0	0	For emissions from industrial plants		
	0 0 0 0	0 0 ++	0	Electricity Hydrogen / Synthetic fuels Use of CCS technology For emissions from power plants	• SUPPLY	

Key energy system decarbonization strategies and how they are pursued in <u>German</u> energy scenarios by 2050

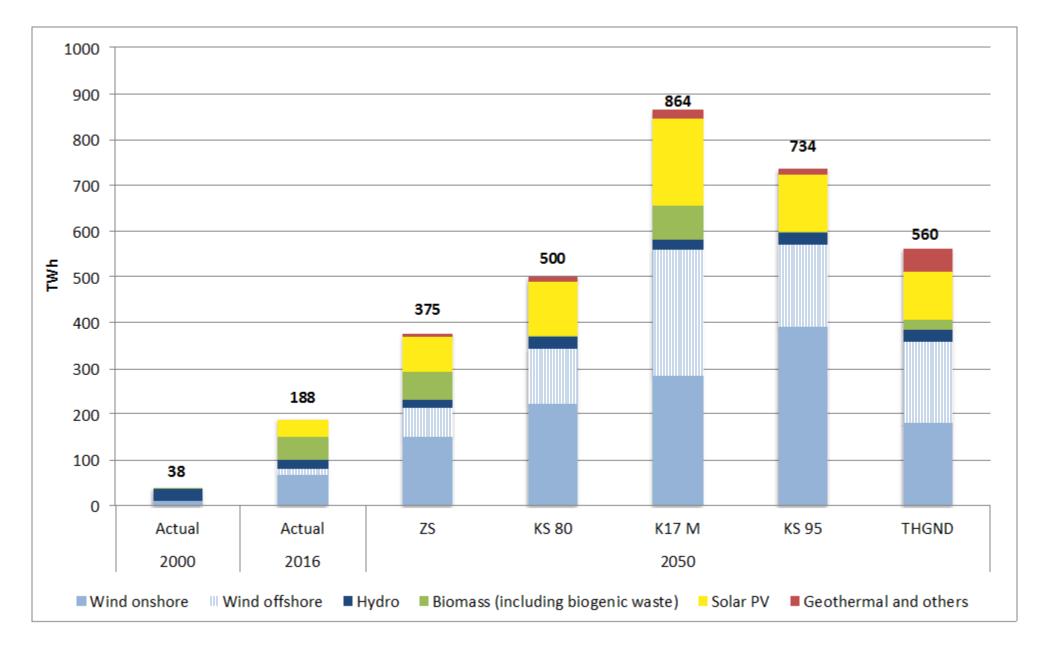
		Scenarios →	ZS	KS 80	K17 M	KS 95	THGND
20	50	energy-related per capita GHG emissions \rightarrow	2.7 t	2.1 t	0.6 t	0.5 t	0 t
DEMAND SIDE	•	Energy efficiency improvements	++	++	++	+++	+++
	•	Behavioural changes	0	+	++	+++	+
	•	Electrification					
		Direct electrification	+	++	++	+++	++
		Indirect electrification (e.g. hydrogen)	0	Ο	++	+	+++
	•	Use of carbon-free energy sources					
SUPPLY SIDE		Renewables for electricity generation	+	++	+++	+++	++
		Renewables for transport and heating	+++	++	+++	++	0
		Nuclear power	0	0	0	0	0
	•	Import of carbon-free energy sources					
		Biomass	++	Ο	0	0	0
		Electricity	+	++	+++	+	+++
		Hydrogen / Synthetic fuels	0	0	0	++	
	•	Use of CCS technology					
		For emissions from power plants	0	Ο	0	0	0
		For emissions from industrial plants	0	0	0	++	0
	A	GREEMENT SOME DISAGREEMEN	IT D	ISAGR	EI EIVI EIN	6	

Summary of key findings



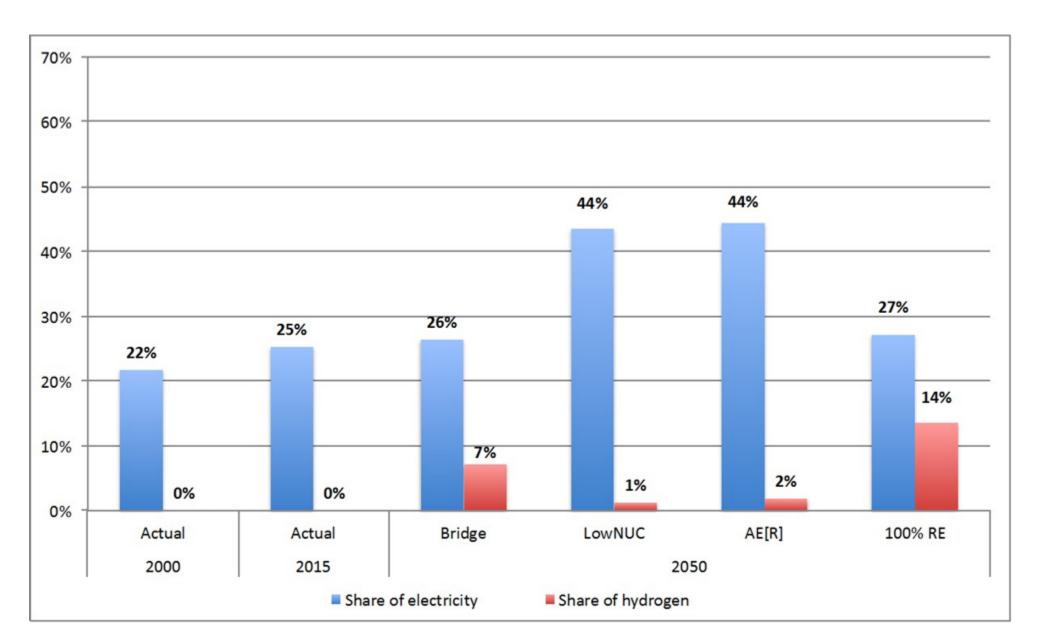
Broad agreement among JP and GER scenario on the key role of:

- Strong energy efficiency improvements
- Electrification
- Considerable further RES-E expansion (see figures)


Role of RES-E: Electricity generation from renewable energy sources in the analysed <u>Japanese</u> scenarios

Role of RES-E: Electricity generation from renewable energy sources in the analysed <u>German</u> scenarios

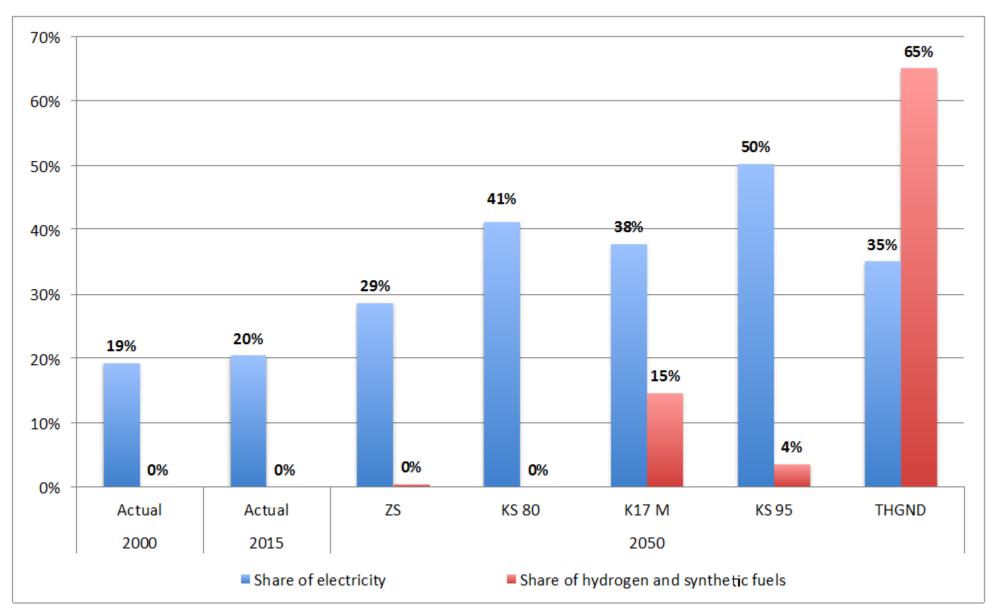
Summary of key findings


Broad agreement among JP and GER scenario on the key role of:

- Strong energy efficiency improvements
- Electrification
- Considerable further RES-E expansion

Disagreement among both JP and GER scenarios on:

- Role of CCS
- Contribution of biomass to future energy supply
- Role of behavioural changes
- Relative importance of direct versus indirect electrification (see figures)


Role of electrification: Share of electricity and of H_2 in total final energy demand in the analysed <u>Japanese</u> scenarios

Wuppertal

Institut

Role of electrification: Share of electricity and of H₂^{*} in total final energy demand in the analysed <u>German</u> scenarios Wuppertal

* Including synthetic fuels

Conclusion: Key research questions and promising areas of Vuppertal joint JP-GER energy systems research

> Key research questions that follow from our analysis:

- What is the optimal mix of direct versus indirect electrification?
- What is the mitigation potential of behavioural changes?
- Is there a need for CCS/CCU to achieve deep decarbonization?
- Do JP & GER need carbon-free energy imports? If so, how much and from where?
- Will a continued use of nuclear power be an opportunity or a hindrance for deep decarbonization in JP?

> Key areas of joint JP-GER energy systems research could be:

- Need for and chances of a stepwise introduction of H_2 .
- Issues related to the decarbonization of materials processing industries.
- Economic, technological and social issues related to energy imports.

Sascha Samadi/ sascha.samadi@wupperinst.org

Thank you!

For further information: www.wupperinst.org