The impacts of US' withdrawal from Paris Agreement on carbon emission space and mitigation cost of other regions and China's response [1, 2]

Hancheng Dai^[1]; Haibin Zhang^[2]; Wentao Wang^[3]

[1] College of Environmental Sciences and Engineering, Peking University, Beijing 10087, China; [3] Ministry of Science and Technology, Beijing 100038, China [1] College of International Relationship, Peking University, Beijing 10087, China; [3] Ministry of Science and Technology, Beijing 100038, China The 23rd AIM International Workshop, National Institute for Environmental Studies, November 27-28, 2017

Results

Introduction

- ▶ Paris Agreement is helpful to reduce the global greenhouse gases to a certain extent, but not sufficient to achieve the 2 °C target.
- However, President Trump of the U.S. declared to withdraw from the Paris Agreement, which is shocking due to the important role that the U.S. has played in the international climate negotiation and governance.
- ► Hence, it is of importance to address such questions as: How will the U.S.'withdrawal affect the implementation of the Paris Agreement, global climate governance and China's climate policy? How should China react to the new situation?
- ► To answer the aforementioned questions, it is necessary to evaluate how the carbon emission space, carbon price, and macroeconomic costs of other parties will be affected by the U.S.'withdrawal.

Method and scenario

This study uses a global dynamic CGE model of China's provincial and the global economy [3], which has been applied systematically to analyze air pollution reduction [4], human health [5, 6], resource use [7], energy and climate mitigation policies [8–12] of China at the national [13, 14] and provincial levels [4–6, 8–12].

- ▶ The model includes 22 economic sectors in the baseline year of 2002.
- ▶ It is constructed using GAMS/MPSGE and is solved in a one-year time step until 2030.

Scena	rio	setting	

U.S. withdrawal will cause additional macro-economic losses of achieving carbon mitigation targets in other regions.

▶ In 2030, under the NDC target, the additional GDP loss will be US\$4.75-19.77 billion (per capita GDP loss of US\$3.5-14.8) in China, 3.14-13.22 billion US\$ (per capita GDP loss of US\$6.9-29.3) in EU, and US\$0.53-2.31 billion (per capita GDP loss of US\$4.4-19.2) in Japan.

Figure 4: The additional GDP change under the NDC and 2 °C targets compared with full implementation of the U.S. obligation scenario (measured in US\$, 2002 constant price): (a) 2016-

This study sets up a BaU scenario and four mitigation scenarios, including (Table 1):

- ► No withdrawal scenario 27: U.S. follow its obligation to reduce carbon emissions byby 27% in 2025 from 2005 to 4.11 Gt in 2030. All other countries also implement NDC commitment.
- ► Withdrawal scenario 20: U.S. only reduce by 20% in 2025 from 2005 level to 4.68 Gt in 2030. However, other countries need to make additional efforts to reduce more emissions to offset the extra emissions from the U.S. based on the population share.
- ► Withdrawal scenario 13: U.S. only achieves 50% of the NDC target by reducing the emissions by 13.5
- Withdrawal scenario 00: 2025 emissions of the U.S. are the same as 2005 level since President Trump renovates the traditional energy supply sectors by removing the constraint on coal mining, extraction of crude oil and natural gas, and by investing substantially in infrastructure construction.

USA	10020	17229 .	1.00		297	201	0.79	
China	1898	9380	6.60		1268	1339	0.22	
EU	8989	12924	1.46		411	452	0.38	
Japan	4403	5433 (0.84		126	120	-0.19	
India	598	4631 8	8.53		1140	1529	1.18	
World	34320	68243	2.79		6444	8223	0.98	
Target	Scenario	2030					2010-2030	
							Global cumulativ	/0
							Olobal culturativ	
		China	India	EU	Japan	US	emissions	
NDC	NDC 27	China 11.01	India 5.55	EU 2.76	Japan 1.09	US 4.11	emissions 985.63	_
NDC	NDC 27 NDC 20	China 11.01 10.92	India 5.55 5.50	EU 2.76 2.73	Japan 1.09 1.08	US 4.11 4.68	emissions 985.63	_
NDC	NDC 27 NDC 20 NDC 13	China 11.01 10.92 10.83	India 5.55 5.50 5.46	EU 2.76 2.73 2.71	Japan 1.09 1.08 1.07	US 4.11 4.68 5.25	emissions 985.63	_
NDC	NDC 27 NDC 20 NDC 13 NDC 00	China 11.01 10.92 10.83 10.66	India 5.55 5.50 5.46 5.37	EU 2.76 2.73 2.71 2.67	Japan 1.09 1.08 1.07 1.05	US 4.11 4.68 5.25 6.33	emissions 985.63	_
NDC 2°C	NDC 27 NDC 20 NDC 13 NDC 00 2°C27	China 11.01 10.92 10.83 10.66 7.75	India 5.55 5.50 5.46 5.37 1.93	EU 2.76 2.73 2.71 2.67 2.38	Japan 1.09 1.08 1.07 1.05 0.67	US 4.11 4.68 5.25 6.33 3.17	emissions 985.63 700.21	

GDP (billion US\$, 2002 constant price)

Population (million)

Annual growth rate

2005-2030 (%)

Table 1: Scenario setting of this study.

0.65

0.64

5.25

6.33

2.31

2.25

- Under the NDC target, the global cumulative CO₂ emissions during the 2010-2030 periods are estimated to be 984.71 Gt based on UNFCCC and the SSP2 GDP.
- ► Emission pathway under 2 °C 27 scenario refers to the SSP2-26-SPA0 scenario of the IMAGE model in the SSP database of the Fifth Assessment Report [15].

Results

2°C20

2°C13

2°C00

7.53

7.36

1.87

1.83

► Under the NDC target, Under NDC 20, 13, and 00 scenarios in 2030, it will result in a substantial decrease in CO₂ emissions spaces by 0.8%, 1.6%, and 3.2% in China, by 1.1%, 1.8%, and 3.3% in the EU, and

a: Regional carbon emissions Scenario 🛨 BaU - NDC 27 - NDC 20 Mil.to --- NDC 00 5000 2000 300 1000 * 2deg 20 ★ 2deg 13

2030 and (b) in 2030.

Scenario NDC 20 NDC 13 NDC 00 2deg 13 2deg 00 -90 -ŝ

Figure 5: The additional per capita GDP change under the NDC and 2 °C targets compared with full implementation of the U.S. obligation scenario (measured in US\$, 2002 constant price): (a) 2016-2030 period and (b) in 2030.

Discussion and Conclusion

► Under the 2 °C target, the

additional GDP loss will be

capita GDP loss of US\$16.4-

53.1) in China, US\$9.35-32.14

billion (per capita GDP loss of

US\$21.98-71.1 billion (per

US\$20.7-71.1) in EU, and

US\$4.13-13.45 billion (per

capita GDP loss of US\$34.3-

What did we assess?

111.7) in Japan.

► This study explores the impacts of the U.S.'withdrawal from the Paris Agreement on the emission spaces, carbon prices, and macroeconomic effects in the main countries or regions due to the changed emission pathway of the U.S., given that the global cumulative carbon emissions are constant.

What were found?

► The results show that withdrawal of the U.S. from the Paris Agreement could win the U.S. substantial additional carbon emissions space and lower carbon prices.

by 0.9%, 1.8%, and 3.7% in Japan, respectively.

► Under the 2 °C target, the U.S. could gain additional emissions spaces by 48%, 66%, and 100% compared with the full implementation of its obligation in the 2 $^{\circ}$ C 27 scenario. The reduction rate will be 1.7%, 2.8%, and 5.0% in China, 1.7%, 2.9%, and 5.5% in the EU, and 1.5%, 3.0%, and 4.5% in Japan, respectively.

Figure 1: The carbon emission trajectories in different scenarios. (a) 2002-2030; (b) Global and China's emissions in 2030.

U.S. withdrawal will push up the carbon price of other regions.

- ▶ In 2030, under the NDC target, the carbon price will rise by 1.1-4.6 US\$ t-1 in China, by 3.6-14.9 US\$ t-1 in the EU, and by 1.8-7.6 US\$ t-1 in Japan.
- ► Under the 2 °C target, the carbon price will increase by 4.4-14.6 US\$ t-1 in China, by 9.7-35.4 US\$ t-1 in EU, and by 16.0-53.5 US\$ t-1 in Japan.

- ▶ On the other hand, it will compress the emissions space and push up the macro-economic costs for other regions, and lead to significant change in the implementation of the Paris Agreement and global climate governance. What shall China react?
- China faces mounting pressure from the international community to assume global climate leadership after the U.S. withdraws,
- ▶ We propose that China should reach the high ends of its domestic climate targets under the current NDCs;
- ▶ Internationally, China should facilitate the rebuilding of shared climate leadership, replacing the G2 with C5. Meanwhile, China needs to keep the U.S. engaged in climate cooperation.

Acknowledgements

This study was supported by the 2017 National Natural Science Foundation Project "The Impacts of U.S. Withdrawal from Paris Agreement on Global Climate Governance and China's Response".

References

- H. Dai et al. "The impacts of U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost of China, EU, and Japan under the constraints of the global carbon emission space". In: Advances in Climate Change Research 13.9 (2017).
- H. Zhang et al. "US withdrawal from the Paris Agreement: Reasons, impacts, and China's response". In: Advances in Climate Change Research (2017).
- [3] H. Dai et al. "Closing the gap? Top-down versus bottom-up projections of China's regional energy use and CO₂ emissions". In: Applied Energy 162 (2016), pp. 1355–1373.
- H. Dong et al. "Pursuing air pollutant co-benefits of CO₂ mitigation in China: a provincial leveled analysis". [4] In: Applied Energy 144 (2015), pp. 165-174.
- Y. Xie et al. "Economic impacts from PM_{2.5} pollution-related health effects in China: A provincial-level analysis". In: Environmental science & technology 50.9 (2016), pp. 4836-4843.
- Y. Xie et al. "Economic impacts from ozone pollution-related health effects in China: A provincial-level [6] analysis". In: Atmospheric Chemistry and Physics (Discussion paper).
- H. Wang et al. "The co-benefit of carbon mitigation on resource use in China". In: Journal of Cleaner [7] Production (In press).

Scenario Figure 2: The carbon price in achieving NDC and 2 °C targets (2002 constant price). (a) 2016-2030; (b) in 2030.

Figure 3: Comparing carbon price under the 2 °C scenario of this study with IMAGE model [15].

Carbon prices are quite close in 2020 but different in 2030 because:

- We don't consider much use of low-carbon technologies.
- ► We only accounts for energy combustion related carbon emissions. Therefore, carbon reductions must be achieved within the energy system.
- Carbon emission constraints are imposed on each country in this model while a global carbon emission constraint is imposed in the IMAGE model.
- Z. Li et al. "Exploring the impacts of regional unbalanced carbon tax on CO₂ emissions and industrial 8 competitiveness in Liaoning province of China". In: Energy Policy 113 (2018), pp. 9-19.
- R. Wu et al. "Achieving China's INDC through carbon cap-and-trade: Insights from Shanghai". In: Applied Energy 184 (2016), pp. 1114–1122.
- [10] X. Tian et al. "The effects of household consumption pattern on regional development: A case study of Shanghai". In: Energy 103 (2016), pp. 49-60.
- [11] P. Wang et al. "Achieving Copenhagen target through carbon emission trading: Economic impacts assessment in Guangdong Province of China". In: Energy 79 (2015), pp. 212–227.
- [12] Y. Xie et al. "Impacts of SO2 taxations and renewable energy development on CO₂, NO_x and SO₂ emissions in Jing-Jin-Ji region". In: Journal of Cleaner Productions 171 (2018), pp. 1386-1395.
- [13] H. Dai et al. "Green growth: The economic impacts of large-scale renewable energy development in China". In: Applied Energy 162 (2016), pp. 435–449.
- [14] H. Dai et al. "Aligning renewable energy targets with carbon emissions trading to achieve China's INDCs: A general equilibrium assessment". In: Renewable & Sustainable Energy Reviews (2017).
- [15] D. P. van Vuuren et al. "Energy, land-use and greenhouse gas emissions trajectories under a green growth paradigm". In: Global Environmental Change-Human and Policy Dimensions 42 (2017), pp. 237–250. ISSN: 0959-3780.