On the sustainability and effects of irrigation for massive production of bioenergy crops

Naota Hanasaki NIES

Outline

- Updates of the global water resources model H08
 - 1. Model development
 - 2. Global impact assessment
 - 3. Regional impact assessment
 - 4. Integrated assessment

Julien-san Takata-san Zhou-san

Bioenergy crop production and irrigation

1. Model development

Substantially updated for more "realistic" expressions of water flows

- Water abstraction from river
- Consumption based

The new H08 model

- +Water abstraction from groundwater, canals, & desalination
- Withdrawal based

Hanasaki et al. 2016, <u>HESS</u> Hanasaki et al. (under review; discussion paper available <u>here</u>)

1. Model development > Application

Where do people take water from?

Legend: fraction of water source

East Asia

(surface water dominated)

Sahara (groundwater+desalination)

Hanasaki et al. (under review; discussion paper available <u>here</u>) See also <u>H08 web site</u>

2. Global impact assessment > ISIMIP

Inter Sectoral Impact Model Intercomparison Project Phase 2b (IPCC SR1.5)

Lange et al. (in prep) See also <u>project website</u>

2. Global impact assessment > ISIMIP

What is the 1.5 degrees warmer world?

3. Regional impact assessment

Many excellent students have applied H08 to multiple regions

4. Integrated assessment

Linking AIM/CGE and H08 for energy-water nexus studies

On the sustainability and effects of irrigation for massive production of bioenergy crops

Background

BECCS to achieve 2 (1.5) degrees target

Year

BECCS needed to achieve the 2 degrees target

	C sequestration	Land	Energy
	GtCeq/yr	(Mha)	(EJ/yr)
BECCS	3.3	380-700	170
Present	Total emission	Total cropland	Primary energy
level	~10	~1500	~500

Source: Smith et al. 2016

Scenarios

How to produce bioenergy crop?

	Base	S1 (rainfed)	S2 (irrigation)	S3 (sustainable)
Year	2000	2100	2100	2100
Total cropland [Mha]	1570	2120	2120	2120
Bioenergy cropland [Mha]	0*	500	250	500
Irrigation for bioenergy crop	No	No	Yes, even if unsustainable	Yes, if sustainable

Yamagata et al. submitted; Hanasaki et al. in prep

Results

Tradeoffs among water, food, and energy.

Yamagata et al. submitted; Hanasaki et al. in prep

Discussion

Why S3 was not effective?

Where irrigation is needed, there is no water available!!

Summary

- Research updates
 - The new model
 - Global impact studies (ISIMIP) \rightarrow Julien Boulange
 - Regional impact studies → Kumiko Takata
 - Energy-Water nexus studies
 - Hydropower, Cooling water \rightarrow Zhou Qian

- Bioenergy and irrigation
- Bioenergy and irrigation
 - Irrigation enhances bioenergy production
 - Water availability matters. Don't be too much optimistic!