The 23<sup>RD</sup> AIM International Workshop

# Modeling the Integrated Impacts of Climate Change

on the Spatial Planning

# for the Ecosystem Conservation

Mo, Yongwon Prof. Lee, Dong Kun

Seoul National University, South Korea

Supported by MOTIVE project

#### Introduction

# **Climate Change Impacts to Ecosystems**

#### **Direct impacts**

#### **Indirect impacts**



(Vos et al., 2008)

## **Research Questions**

How/Where should we...

## Connectivity

1. Connect to assist the migration of species as much as possible by climate change?

## Spatial prioritization

2. Conserve considering both of direct and indirect impacts by climate change?

# Part 1 : Connect to assist the migration of species by climate change as much as possible? - Topographic linkages

(Published) Mo, Y., Lee, D.K., Song, K., Kim., H.G., and Park, S.J.,

"Applying topographic classification, based on hydrological process, to design habitat linkages for climate change", Forests

#### Introduction

# Physical environments as "arena" of biological activity (Hunter, 1988)



Influence of topography and soils on distribution of plants and animals (revised by Hugget, 2004)

# **Topographic linkages**

"to support movement by species associated with land facet (based on topography), today and in the future." (Brost and Beier, 2012)/24)

## **Study sites**

- 3 Sample sites
- Large forests needed to connect





**Study flow** 

# Two topographic classification

Represent species distributions

Least Cost Path (LCP)



- 1. Morphometric Topographic Classification Concept
  - The shape of terrain : relative elevation, slope (Topographic Position Index, TPI)



(Jenness et al., 2012)

- 2. Generic Topographic Classification Concept
  - The hydrological process: erosion, transport and sediment processes



The soil-landscape units by generic classification (revised by Park et al., 2001)

# Spatial relationship with coniferous and deciduous forests

Generic topographic classes represents better







#### Conclusions

- Identified the possibility of using topography
- The generic topographic classification was superior than the morphometric.

• However...not perfect. We need to consider both of biotic and abiotic features in ecosystems.

Further research

 Identify the other abiotic features such as soil, geology, and water.

# Part 2 : Conserve to consider both of direct and indirect impacts by climate change?

- direct vs both
- stepwise planning

## Study site

- South Korea
- 1km X 1km Grids
- 96,970 Planning units



## Study flow – direct and both



## Study flow – stepwise planning



**Prioritization - MARXAN** (Developed by Queensland Univ. in Australia)

- Design the new protected area network
- Consider threats (cost) and efficiency (minimum total score)
- Applying Simulated Annealing Algorithm (SA)

$$Min(Total Score) = \sum_{PUs} (1) Cost + BLM \sum_{PUs} (2) Cost + BLM + \sum_{PUs} (3) Cost + BLM + \sum_{PUs} (3) Cost + Cost +$$

1 The total cost of the prioritization area

② <u>The total boundary length</u>, multiplied by a modifier(BLM, Boundary Length Modifier)

③<u>The penalty</u> for not adequately representing conservation targets

#### \*reps. 100 times

## **Prioritization - MARXAN** (Developed by Queensland Univ. in Australia)



$$\sum_{PUs} (1) = 0$$

Cost: number in each box Boundary: 1 Penalty: 10 by each species

# Comparison of Prioritization Between Direct & Both

- Mountain and Alpine area more important
- Fragmentation: Direct > Both



## **Stepwise Planning**

- Identified areas need to be expanded for the future
- Western regions and Alpine areas



#### Conclusions

- Applying both more useful, less fragmented
- Usefulness of stepwise planning

Limitations and further research

- Need to apply the interactions between impacts
- Different type of ecosystems
- Effect of planning-unit

(Under review) Mo, Y., Lee, D.K., Kim., H.G., Huber, P.R., and Thorne, J.H., "Different influences of planning-unit characteristics on systematic conservation planning according to the human footprint level", Biodiversity and Conservation

- Other impacts by human
- Consider connectivity & spatial prioritization simultaneously

Consider connectivity & spatial prioritization simultaneously

The 23<sup>RD</sup> AIM International Workshop

Thank you for your attention : )

This study was funded by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

# Indirect climate change impacts (30s, 50s)

