What's with Article 6 and 45Q?

Two New Research Questions

Jae Edmonds

Joint Global Change Research Institute

The Extraordinary Luxury of Time

- Thanks for the opportunity to deliver a keynote address to the 24th AIM workshop.
- The AIM research team has been at the cutting edge of research for three decades and I'd like to talk about two issues that are on the frontier
- One that AIM began work on 2 years ago—Fujimori et al. (2016)
- The other is just emerging—45Q

The 23rd AIM International Workshop

The Value of Article 6

The Paris Agreement and Article 6

- The Paris Agreement uses a bottom up approach— Nationally Determined Contributions (NDCs)
 - Each member of the agreement determines what it can contribute to achieving the goals of the Paris agreement
- Article 6 allows countries to jointly implement NDCs

How Valuable is Article 6?

What is the potential economic value of implementing Article 6?

- What is the potential size of the carbon market?
- Who would be the sellers and who would be the buyers?
- How much could costs be reduced?
- How much additional ambition is enabled by cost reductions?

Source: https://unfccc.int/files/focus/long-term strategies/application/pdf/mid century strategy report-final red.pdf

We build on earlier work by Shinichiro Fujimori, et al. (2016)

The Global Change Assessment Model (GCAM)

Scenario Assumptions

- Socioeconomic assumptions (population, GDP)
- Energy, land use, and water technologies
- Policies, company actions and preferences
- Resources

- Scenario Outputs

 Prices and production
 - Energy sectors

quantities:

- Transportation
- Primary energy resources
- Agricultural products
- Land use
 - Crops (by type)
 - Pasture
 - Unmanaged
- Water demand
 - Raw demand by sector
 - Response to scarcity
- **▶** Atmosphere-Climate
- **Economic indicators**
 - Economic losses
 - Income transfer

NDC Emissions: Independent Implementation

Global I-NDC Scenario CO₂ Emissions

NDC Shadow Prices: Independent Implementation

Wide range in shadow prices

Shadow Price of CO₂

NDC Shadow Prices: Independent vs. Joint Implementation

 Joint implementation shadow price lies between high and low prices of independent implementation

	2030	2050	2100
I-NDC Range	\$0 to \$152/tonCO ₂	\$0 to \$144/tonCO ₂	\$2 to \$314/tonCO ₂
J-NDC	\$46/tonCO ₂	\$74/tonCO ₂	\$120/tonCO ₂
	Fujimori, et		

Shadow Price of CO₂

NDC Emissions: Independent vs. Joint Implementation

Potential changes in emissions—CO₂

- Seller (13 regions)
- Buyer (6 regions)
- Seller to buyer (10 regions)
- Buyer to seller (South Africa)
- Seller to buyer to seller (Colombia)
- Buyer to seller to buyer (European Free Trade)

Potential Market Size—Billion of 2015 US\$

Year	Market Size (Billion 2015 US\$)
2030	\$222
2050	\$572
2100	\$1,430

World Bank. 2017. Estimate 2030 market size at **\$100-400** billion US\$ 2015 2030 2045 2060 2075 2090 Fujimori, et al. 2016. Estimate 2030 market size of **\$38 billion** 2005 US\$

Emissions Mitigation Cost: Independent vs. Joint Implementation

GDP Change by Region – Billion of 2015 US\$

Net GDP Change (Cumulative)

How much additional ambition could be enabled by cost reductions? Global CO, Emissions

- We assume that the cost that each region is willing to contribute to emissions mitigation is reflected in their NDC,
- We sum the costs and then assume that in each period, the world limits emissions using Article 6 mechanisms.
- Each country increases its ambition so that its net cost, after trade, is identical to its net cost under the I-NDC scenario.
- Something more easily done in a model than the real world.

How much additional ambition c enabled by cost reductions?

Cumulative Enhanced Mitigation (2020-2100)

310 Gt CO₂

How Valuable is Article 6?

- Article 6 holds significant potential to reduce cost and enhance ambition
 - Everyone could be better off through collaboration
 - 2030 global net benefit
 ~\$270 billion
- Realizing this potential is a realworld challenge
 - Near-term: Translating NDCs to Internationally Transferred Mitigation Outcomes (ITMOs)
 - Long-term: It could take any number of forms including NDC coalitions, ratchet mechanisms, or other novel approaches.

Source: https://unfccc.int/files/focus/long-term_strategies/application/pdf/mid_century_strategy_report-final_red.p

45Q

45Q

The Bipartisan Budget Act of 2018 included an amendment to the federal tax code section 45Q.

- The new 45Q provisions increase the value of the tax credit for capturing CO₂ in a qualifying facility and
 - Selling for use in EOR to \$35/ton
 - For deep saline storage to \$50/ton.
- EMF34 Study Group goal: Assess the effect of 45Q on CO₂ capture utilization and storage (CCUS)
- This implies developing a model of the CO₂ market including supplies and demands

Source: https://www.pnnl.gov/science/images/highlights/atmospheric/pipeline.jpg

45Q, CCUS, and CO2 Market

- Potential sources of concentrated CO₂
 - Natural reservoirs
 - Large point source emitters with CO₂ capture technology

Natural Reservoirs Large pointsource emitters with CO₂ capture

45Q, CCUS, and CO2 Market

- Potential sources of concentrated CO₂
 - Natural reservoirs
 - Large point source emitters with CO₂ capture technology

Natural Reservoirs

Large pointsource emitters with CO₂ capture

- Potential disposition of concentrated CO₂
 - EOR
 - Long-term storage (e.g., Deep saline reservoirs, onshore and offshore)

45Q, CCUS, and CO2 Market

- Potential sources of concentrated CO₂
 - Natural reservoirs
 - Large point source emitters with CO₂ capture technology
- Potential disposition of concentrated CO₂
 - EOR
 - Long-term storage (e.g., Deep saline reservoirs, onshore and offshore)
- Markets that connect them

Resources, reserves, and EOR potential

- Production occurs out of reserves
 - Reserves are constantly being depleted and enhanced
- The amount of reserves added depends on the resource supply schedule, technology and policy
 - Reserves are essentially vintage production entities
 - Reserves are produced over time (60 years in GCAM)
- Each reserve vintage includes a potential EOR category
 - Derived demand for CO₂ depends on EOR potential and cost

Time

GCAM US Electric Production--\$50/tCO₂

Ref 45Q scenario

- \$50/tCO₂ for CCS
- \$35/tCO₂ for long-term and EOR

Credits drive coal retrofits and some new coal with CCS

- 1/3 of coal retrofitted to CCS in 2025
- 2% coal with new CCS in 2025
- > half of all coal has CCS in 2050

GCAM US Electric Production--\$75/tCO₂

Ref 45Q scenario

- \$75/tCO₂ for CCS
- \$50/tCO₂ for long-term and EOR

Credits drive coal retrofits with some new coal with CCS.

GCAM Regional Oil Production

 Resource/Reserve model leads to stable regional production behavior

45Q Impact on US Oil Production

- Early results show small 45Q net upward impact.
- Interaction with Global Market needs to be considered. US increase near-term could save some cheaper oil elsewhere for medium term.

GCAM CCUS (MtC/year)

 EOR is used earlier under our modified, extended 45Q, but over time and at higher CCUS levels the growth is in long-term storage.

What's next?

- Policy questions continue to develop and need analysis to answer.
- The two questions emerging here are an initial contribution to a literature.
- But each answer in turn will stimulate new questions.

Source: https://matcha-jp.com/en/1432

DISCUSSION