

Regional and sectoral contributions to climate change

Xuanming SU, Japan Agency for Marine-Earth Science and Technology (**JAMSTEC**)

Introduction

- Countries' or regional contributions to climate change are important in the formulation of climate change policy.
- Developed countries emit CO_2 or non- CO_2 emissions which may date back to pre-industrial and the **historical emissions are large**; while developing countries contribute relative fewer emissions in historical period but increase significantly in recent years or visible future.
- The objective of this study is to quantify the **contributions to climate** change for each region or country in the world, as well as the relative contribution from each anthropogenic emission, including CO_2 and non- CO_2 emissions or sectoral contribution. A regional contribution table considering historical timescale will be obtained for

Results

making climate change policy.

Method

- Normalized marginal method (Li et al., 2016)
- For each GHG emission, we performed three simulations:
- \checkmark one 'normal' with all emissions included in the simulation ('all');
- \checkmark one with country emissions reduced by a fraction ε (' $-\varepsilon_{Country}$ '), here *ε*=0.1%;
- \checkmark and one with all except the country emissions reduced by the same fraction (' $-\varepsilon_{RoG}$ ', for rest of the globe).
- Relative contribution α following the normalized marginal

method: $\alpha = [\text{Tem}(\text{all}) - \text{Tem}(-\varepsilon_{\text{Country}})]/[2 \times \text{Tem}(\text{all}) - \text{Tem}(-\varepsilon_{\text{Contry}}) - \text{Tem})$ $(-\varepsilon_{RoG})].$

- The Simple Climate Model for **OPT**imization (**SCM4OPT**) is used for climate change simulation.
- Climate-related uncertainties:

Figure 2: Regional contributions to climate change of temperature **increase.** The ranges in a indicate the 25th and 75th percentiles; and the bar indicates the 50th percentile.

Figure 3: Regional emissions and contribution trends; Green lines are cumulative CO_2 emissions, blue lines show historical industrial CO_2 emissions, orange lines are radiative forcing and red lines are temperature increase contributed by selected countries. The ranges in a indicate the 25th and 75th percentiles; and middle solid line indicates the 50th percentile.

Table 1: Climate contributions of industrial CO₂ by 2012

Country	Cumulative CO ₂ share Forcing contribution 14.9%		Temperature contribution	
CHN			13.7%	11.4%
USA	22.1%		23.3%	24.7%
IND	3.4%		3.2%	2.7%
RUS	7.6%		7.6%	8.0%
JPN	4.7%		4.8%	5.0%
DEU	4.1%		4.6%	5.1%
KOR	1.3%		1.2%	1.0%
IRN	1.1%		1.1%	0.9%
CAN	2.0%		2.1%	2.1%
MEX	1.3%		1.2%	1.1%
BRA	1.1%		1.1%	1.0%
GBR	2.4%		2.8%	3.1%
SAU	0.9%		0.8%	0.7%
IDN	0.	9%	0.8%	0.6%

Figure 1: CMIP5 historical simulation used in the model calibration. a Land-atmosphere CO₂ flux (unit: GtC yr⁻¹), solid red line indicates mean values and black solid line shows results from Global Carbon Project 2017. b Oceanatmosphere CO₂ flux (unit GtC yr⁻¹), solid red line indicates mean values and black solid line shows results from Global Carbon Project 2017. c Adjusted radiative forcing (unit: W m⁻²), estimated based on Forster et al. (2013). Solid red line indicates mean values. d Temperature increase above preindustrial level (unit: K). Solid red line indicates mean values.

AUS 1.2% 1.2% 1.2%

Conclusions

• This study tries to quantify the **contributions to climate change for** each region or country in the world, as well as the contribution from each anthropogenic emission.

• The output shows that, developed countries emitted more GHGs in historical period and the contributions to current climate change are large; while the contributions from developing countries are relative small, however, such contributions will become lager in near future since their emissions increase rapidly nowadays. TOUGOU