

Jung Hee Hyun¹, Dong Kun Lee^{1, 2}, Seokhwan Yun³, Jiyeon Kim³, Chae Yeon Park¹, Tae Yong Jung⁴, Hui Cheol Jung⁵

¹Interdisciplinary Program in Landscape Architecture, Seoul National University, Rep. of Korea. ²Department of Landscape Architecture and Rural System Engineering, Seoul National University, Rep. of Korea. ³Graduate School, Seoul National University, Rep. of Korea. ⁴Graduate School of Int'l Studies, Yonsei University, Rep. of Korea. ⁵ Korea Environment Institute, Rep. of Korea

1. Analysis of Korea's Adaptation Implementation Plans of Local Governments (1st Plan, 2014~2018)

Challenges in identifying, prioritizing, and implementing adaptation plans are intensified according to spatial-temporal conditions but there is little to no guidance on which approach is appropriate for tackling each of these challenges. Ever since South Korea enforced the implementation plan for national, regional and local adaptation in accordance with the "Act on Low Carbon Green Growth", Korean local governments have had the difficult task to understand climate science in its depth and breadth. The purpose of this study is to suggest strategies for decision-support tool developments that can enhance the effectiveness of climate adaptation plans. First, a review of local "Implementation Plan for Climate Change Adaptation" from each province, identified factors that inhibit effective implementation of adaptation plans were analyzed. Currently, local governments are provided an online support tool for vulnerability assessment, VESTAP. However decision makers did not translate the vulnerability and impact assessments into shaping their goals for adaptation. Instead, the selection process for implementing adaptation measures was based on current policies with no evaluation on the actual effectiveness. Further, prioritization of adaptation measures were decided based on stakeholder input but without an objective and quantified method (Table 1).

2. Review of Successful Cases of Adaptation Planning Decision-Support Tools

Strategies to improve adaptation planning includes:

- . Designing methods that identify local adaptive capacity, objectives and priorities adequately
- ex) California's adaptation capability advancement toolkit; Adapt-CA
- 2. Develop tools that measure the effects of adaptation measures at the local level
 - ex) PLASK(Project on Local Analysis of the Social-Economics of Climate Adaptation), Denmark
- 3. Incorporate scenario-based long-term planning models
 - Below is a review of approaches used for effective long-term planning to incorporate uncertainties

These bottlenecks to effective adaptation plan implementation can be interpreted into the following categories identified in previous literatures:

- 1. Limited assessment of local context (Cash et al., 2002; Dessai et al., 2009)
- 2. Lack of scientific evidence measuring effect of adaptation measures (Rapley et al., 2014)
- 3. Inadequate consideration of uncertainties, especially for long-term planning (Vij et al., 2017)

 Table 1. Methods for Determining Adaptation Priorities by Sampled Municipalities

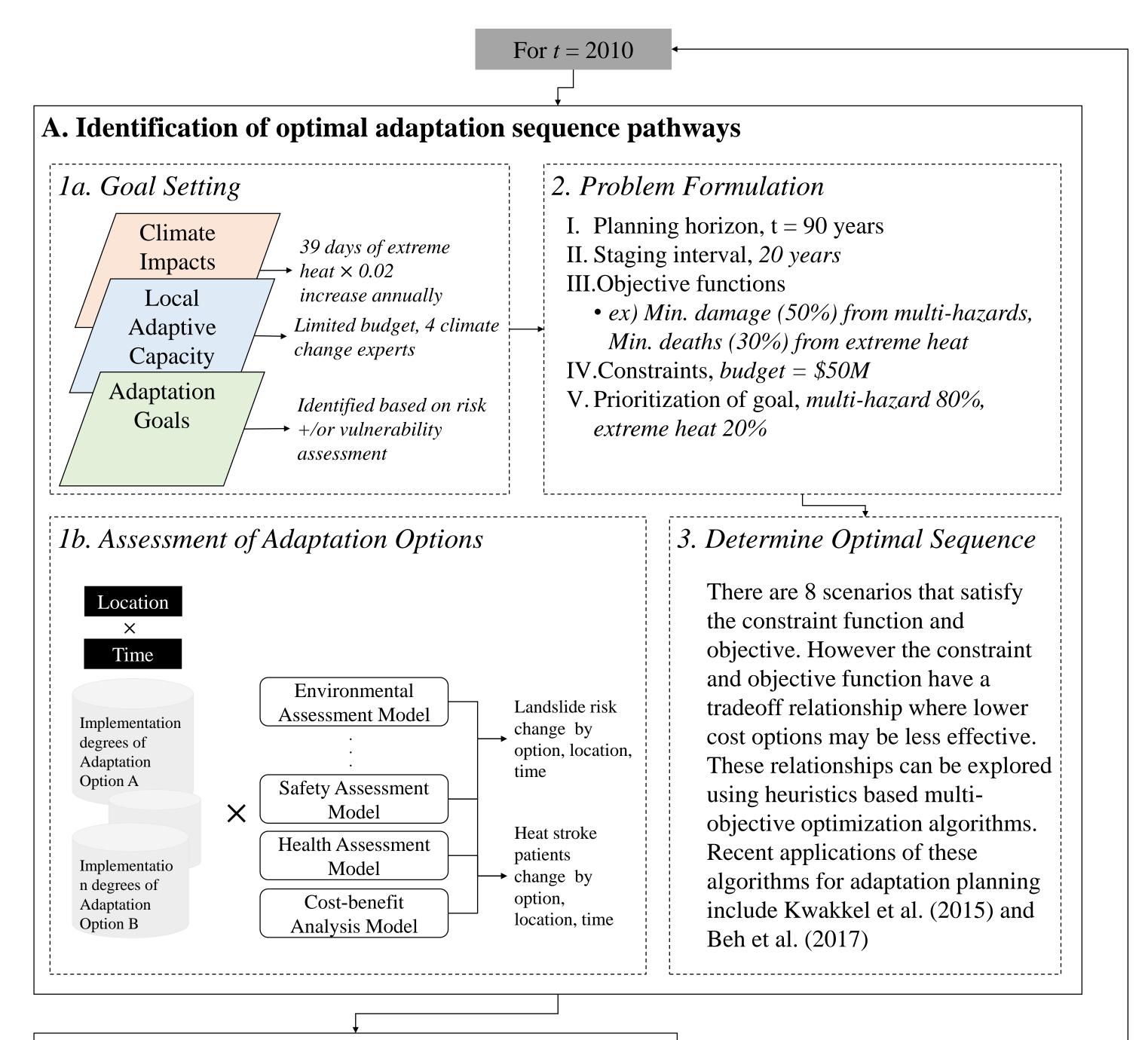
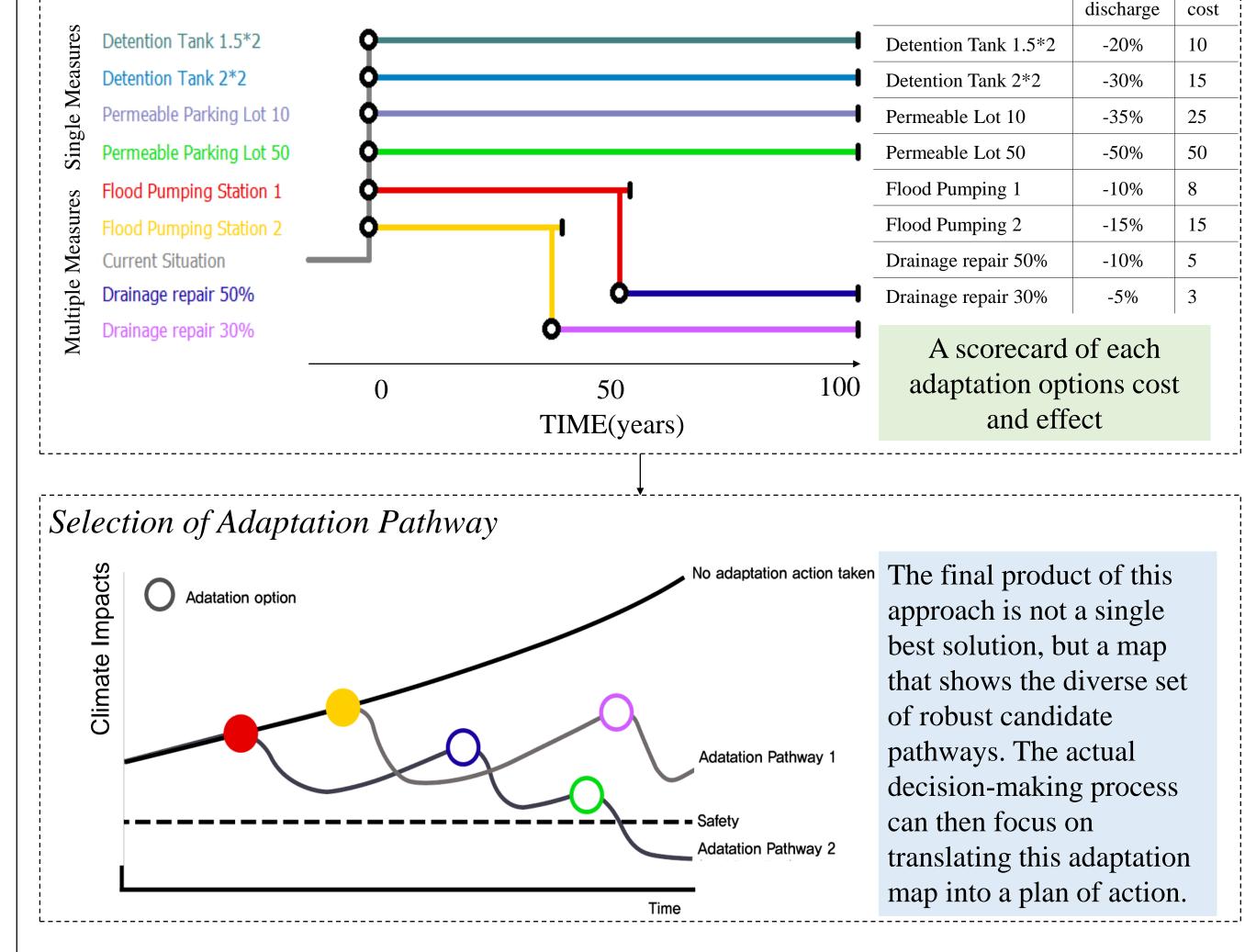

Municipality	Vulnerability Assessment	Citizen Survey	Civil Servant Survey	Past Climate Impacts	Expert Evaluation	Other
Gwanak-gu, Seoul	80%		20%			
Dalsung-gun, Daegu	50%	30%	20%			
Namdong-gu, Incheon	$\sqrt{*}$		\checkmark	\checkmark		
Dong-gu, Gwangju	\checkmark				\checkmark	\checkmark
Seo-gu, Daejeon	\checkmark			\checkmark	\checkmark	\checkmark
Dong-gu, Ulsan	\checkmark		\checkmark	\checkmark	\checkmark	
Pocheon, Gyeonggi	20%	30%	30%	20%		
Taebaek, Gangwon	\checkmark			\checkmark	\checkmark	\checkmark
Hwacheon-gun, Gangwon	\checkmark		\checkmark	\checkmark	\checkmark	
Cheongju, Chungbuk	\checkmark		\checkmark	\checkmark		
Goesan-gu, Chungbuk	20%	25%	25%	10%		20%
Asan, Chungnam	\checkmark		\checkmark			
Yaesan-gun, Chungnam	20%	30%	30%	20%		
Gwangyang, Jeonnam	20%	30%	30%	20%		
Hwasun-gun, Jeonnam	\checkmark		\checkmark	\checkmark		
Pohang, Gyeongbuk	\checkmark		\checkmark	\checkmark	\checkmark	\checkmark
Youngyang-gun, Gyeongbuk	\checkmark				\checkmark	\checkmark
Gimhae, Gyeongnam	\checkmark		\checkmark			
Sanchung-gun, Gyeongnam				\checkmark		
* Represents a ratio only if weights	are specified. $$ is th	e actual ratio n	ot specified			

Table 2. Adaptation policy approaches to support long-term climate decision-making

Approaches	Description	Main Characteristics	Key references	
Scenarios- based	Key focus on alternatives within a system and set process	Inflexible; case focused, Local, national and global scale	Moss et al., 2010; Vervoot et al., 2014	
Real option analysis	Treating a range of adaptation options as 'real options' in the face of uncertainty and evaluating the merits of both action and inaction in this context	Flexible; uncertainty; case focused	Yang &Blyth , 2007; Woodward et al., 2013	
Portfolio analysis	Selecting a portfolio of adaptation options rather than single options and exploring which is most effective in terms of return and uncertainty	Flexible, experimental,		
Robust Decision Making	Quantitative decision-analytic approach for supporting decisions under conditions of deep uncertainty and informed by stakeholder driven processes	Flexible; uncertainty; stakeholder engagement	Lempert and Groves, 2010; Weaver et al., 2013	
Adaptation Pathways	Key focus on policy reflexivity and adaptive nature of it. Emphasizes policy and transformational change; conceptually and theoretically in experimental phase, but some empirical evidences at local scale available	Flexible; reflexive; time- oriented; experimental; focuses on incremental change; deep uncertainty	Butler et al. 2016; Wise et al., 2014; Hassnoot et al., 2013	

Adapted from Vij et al. (2017) and McDermott and Surminski (2018)

3. Meta-Model Framework: Identify optimal adaptive pathways using quantified assessments of adaptation options



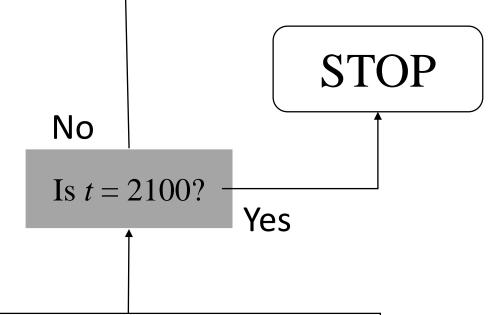
4. Expected Results: Adaptation pathways

Problem Formulation

For municipality $A = w_1 \left(\alpha_{1_{ij}}, \alpha_{2_{ij}} \dots \alpha_{n_{ij}} \right) + w_2 \left(\beta_{1_{ij}}, \beta_{2_{ij}} \dots \beta_{n_{ij}} \right) + w_3 \left(\gamma_{1_{ij}}, \gamma_{2_{ij}} \dots \gamma_{n_{ij}} \right)$ $\alpha, \beta, \gamma = Flood pumping, Drainage repair, Permeable parking lot$ $i = cost, \quad j = adaptation option's effect$ $w_1, w_2, w_3 = priority weights between options$

Assessment of Adaptation Options and Sequencing

B. Performance assessment of optimal adaptation pathways


This work is supported by Korea Environment Industry & Technology Institute(KEITI) through Climate Change R&D Program, funded by Korea Ministry of Environment (MOE)(2018001310002)" 4. Performance Assessment using metrics

The reliability of each scenario's adaptation effect is evaluated using a performance metric. An example of a performance metric includes, the probability of an adaptation option successfully adapting to impacts

5. Assessment of the sustainability and macroeconomic effects of Adaptation Pathways

Long-term plans should incorporate the principles of sustainability, for both socio-economic benefit and equitable planning. Sustainability of adaptation plans can be assessed using the SDG framework, and ensure that benefits are distributed equally with attention to most vulnerable groups.

C. Selection of Adaptation Pathway

t = t + 10

Pathways must be assessed against their different uncertainties, a methodology and strategy for expressing the data must be developed in further research