

Will electric vehicles deliver the transition to a low carbon future?

Runsen Zhang

Civil and Environmental Engineering/Architecture Unit, IDEC Hiroshima University, Japan rzhang@hiroshima-u.ac.jp

SUMMARY

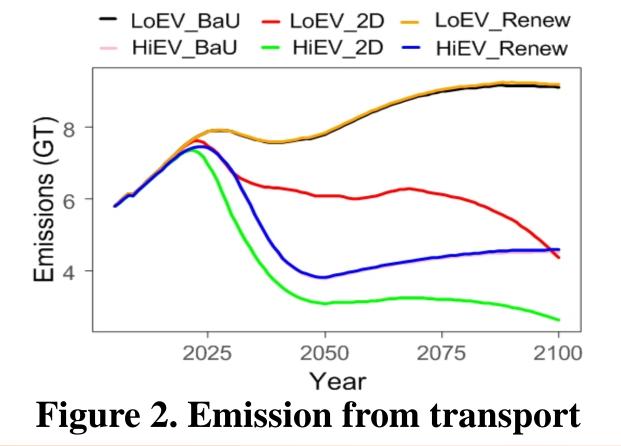
To create a better understanding of whether and how transport electrification would contribution to climate change mitigation, this research aims to develop an integrated modeling methodology to couple transport model, economic model, and climate model, which can depict the interaction between the transport, energy, macroeconomy, and climate change. Scenarios are created to simulate the potential for different transport, energy, and climate policy interventions. This project attempts to develop an interdisciplinary framework that integrates transport planning and climate change studies, with the objective of helping shape the policy agenda for electrified transport.

INTRODUCTION

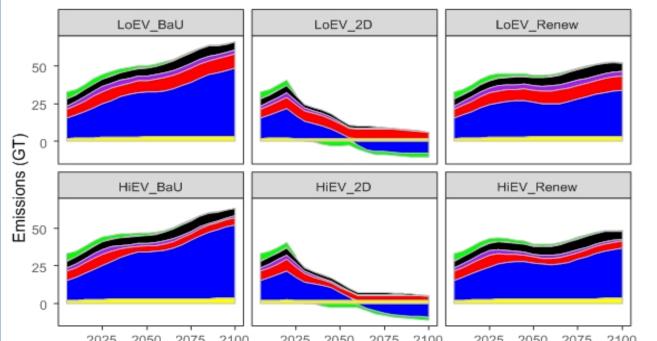
• Background

The transport sector accounts for approximately a quarter of global greenhouse gas emissions. Road transport is by far the biggest emitter accounting for more than half of all transport-related emissions. Switching to electrified road transport permits an optimistic outlook to meet the stringent climate targets. Electric vehicles (EVs) are often considered as an attractive solution towards a green future.

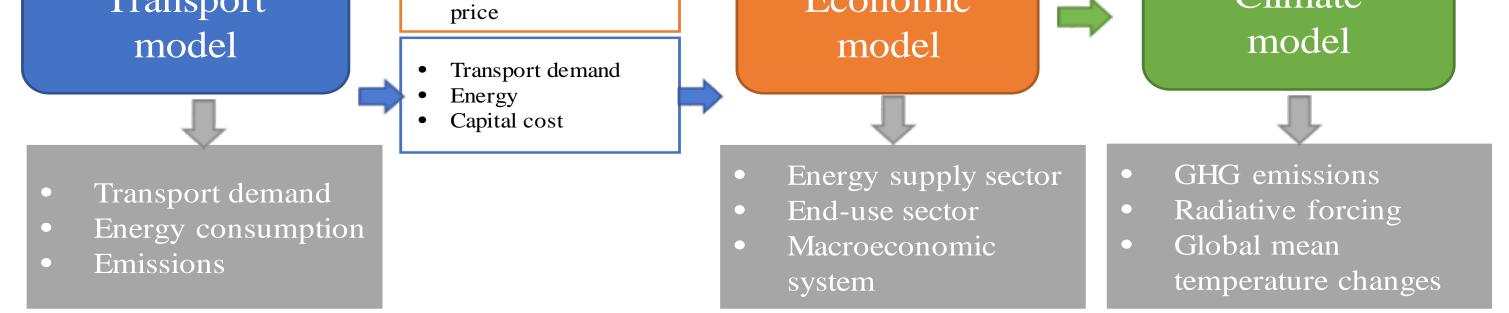
• Objectives


Are EVs as green as they are supposed to be?

To understand the role of transport electrification in achieving climate change targets, this study is intended to (1) reveal the interactive mechanism between transport electrification, energy, and climate change, and (2) provide a better policy simulation tool for the electrification of road transportation towards a green future.


METHODOLOGY • GDP, Population Industrial value added Energy and carbon Climate Economic Transport

RESULTS


• Emission from transport

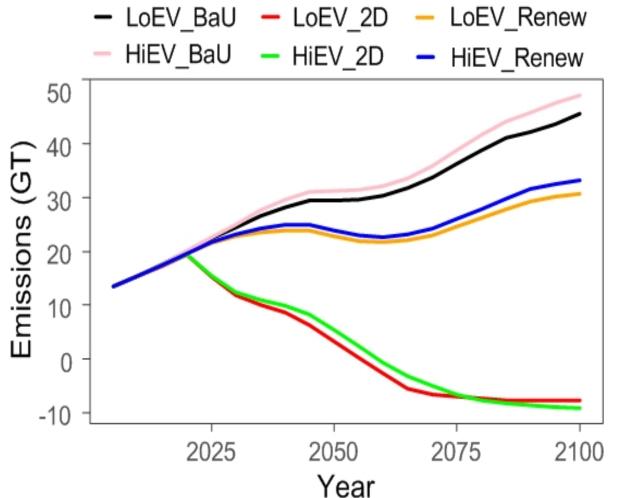
• Emission by sectors

- \succ For transport sector, the deployment of EVs is more effective to reduce the emissions than carbon pricing.
- Electrified road transport together with carbon pricing have the highest mitigation potential.
- Renewable energy policy does not have direct positive effects on emission reduction in transport sector.
- \succ Although transport electrification has more powerful and effective impacts on emission reduction for transport sector, it requires high emissions in energy supply sector if the transport is not powered by decarbonized electricity generation.
- Compared with the high preference on

Figure 1. Model framework

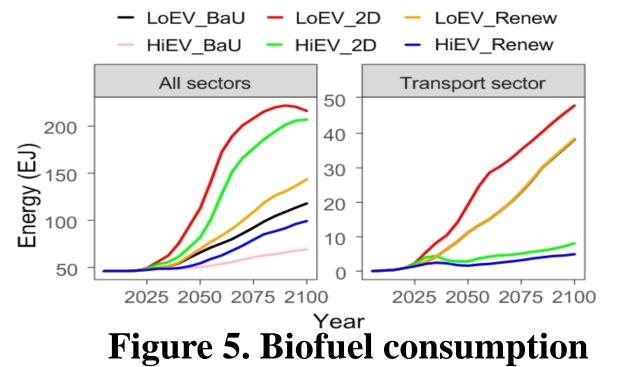
The transport model

The transport model offers spatially flexible and temporally dynamic simulations of transport demand, energy use, and emissions. To understand how transport electrification might affect the anticipated low carbon transition, the transport model considers more technological details and behavioral factors on EVs.


Coupling of transport model, economic model, and climate model

Computable General Equilibrium (CGE) model and simplified climate model MAGICC are employed to couple with the transport model. <u>An iterative algorithm</u> is used to obtain the convergence of coupled transport-economic-climate model.

The CGE model passes the macroeconomic variables to transport model for transport demand projection. The transport demand, transport-related energy consumption, and capital cost for transport device feedback from transport model is passed to economic model. This loop continues until the energy consumptions computed in economic model and transport model are equal.



• Emission from power sector

Figure 4. Emission from power sector

Biofuel

renewable energy, carbon pricing has the most effective effects on emission reduction.

- > Transport electrification slightly produces more emissions from energy supply, because the deployment of EVs requires more electricity.
- Carbon pricing has the most powerful effect on emission reduction in power sector, followed by high preference on renewable energy.
- Transport electrification needs to be implemented together with decarbonization of power sector, otherwise the emissions from power sector still keep growing.
- \succ EV policy produces lower consumption of biomass compared with scenarios without the deployment of EV.
- > Carbon pricing tends to increase the

Scenario definition

	SCENARIOS
EV deployment	LoEV_BaU
	LoEV_2D
Carbon pricing	LoEV_Renew
	HiEV_BaU
Renewable energy	HiEV_2D
	HiEV_Renew

Table 1. Scenarios framework **DESCRIPTION** JS Moderate preference on EVs with no climate efforts Moderate preference on EVs with no

carbon pricing for 2 degree target Moderate preference on EVs with high preference on renewable energy

100% of EV market share by 2050 with no climate efforts

100% of EV market share by 2050 with carbon pricing for 2 degree target

> 100% of EV market share by 2050 with high preference on renewable energy

consumption of biomass in all sectors including transport sector.

DISCUSSION & IMPLICATIONS

- Transport electrification is bound to shift the emissions from transport sector to power sector.
- \triangleright EV policy fails to contribute to the emission reduction when the power sector is not decarbonized, though the transport-related emissions can be reduced significantly.
- \succ Transport electrification might help to ease the pressure of biofuel consumption on agricultural production and food security.
- \succ Single transport electrification does not mean the successful emission reduction. Instead, the linkage between sectors deserve attention to meet the stringent climate target.
- Renewable energy policy and carbon price need to be taken into consideration to match up with the transport electrification policy.