The 25th AIM International Workshop 18-19 November 2019

Global Advanced Bioenergy Potential under Environmental Protection Targets

<u>Wenchao Wu</u>¹, Tomoko Hasegawa², Haruka Ohashi³, Naota Hanasaki¹, Jingyu Liu⁴, Tetsuya Matsui³, Shinichiro Fujimori⁵, Toshihiko Masui¹, Kiyoshi Takahashi¹

- 1. National Institute for Environmental Studies
- 2. Ritsumeikan University
- 3. Forest Research and Management Organization
- 4. Shanghai Jiao Tong University
- 5. Kyoto University

Asia-Pacific Integrated Model

http://www-iam.nies.go.jp/aim/index.html

Background

Bioenergy and climate mitigation:

- Stringent climate targets difficult to achieve without negative emissions (Rogelj et al., 2018).
- Bioenergy (dedicated energy crops with CCS) is one of the most discussed negative emission options (Williammson, 2016).
- IPCC 1.5-degree SR: medium amount of 152 EJ/yr (40-312 EJ/yr).

Environmental concern:

- Plantation of large-scale bioenergy crops puts pressure to terrestrial system (van Vuuren et al., 2013), such as soil quality and biodiversity.
- Currently, more than 75% of the land on Earth is substantially degraded (IPBES, 2018). Intensive farming worsen the situation.
- Expansion of cultivated land area also threats biodiversity, segmentation and loss of habitat (Immerzeel et al., 2014).

Research objectives

Questions:

- How much bioenergy can we produce without causing further land degradation and biodiversity loss?
- What can we do to increase bioenergy potential to supply the amount required for mitigation while protecting the environment?

In specific:

- Technical and economic potential of dedicated bio-crop.
- Geographic distribution of bioenergy potential.
- * Technical potential: total quantity without considering production costs;
- * Economic potential: production quantity under certain production costs;
- * Production cost: input costs and land transition costs.

Environmental protection policies

- ☐Soil protection:
 - Moderate: severely degraded land (GLADIS)
 - Enhance: series degraded land (GLADIS)
- ☐ Biodiversity protection:
 - Moderate: protected area (WDPA & KBA);
 - Enhanced: protected area + biodiversity sensitive area (index > 0.9 by AIM/Biodiversity).

Implementation:

- ☐ In soil protection, degraded land was excluded for annual crops and allocated to bioenergy crops only.
- In biodiversity protection implementation, areas were excluded both for annual and bioenergy crops.

Areas protected

Figure. Maps for environmental protection policies

Dedicated bioenergy crops

• Miscanthus & switchgrass; high yield in biomass

Figure. Bioenergy crop potential yield from the H08 model (tonne/ha/yr)

Societal transformation measures

<u>Demand side policy</u>:

• Sustainable diet: towards more plant-based foods.

Supply side policy:

- Advanced technology: assuming high irrigation growth rates;
- Trade openness for food: increase freeness of trade.

Scenarios for simulation

Table. Scenario setting

Scenario name	Environmental protection policy	Societal transformation measure
(1) No policy	WDPA (Ia, Ib, II, III)	×
(2) Moderate biodiversity protection	WDPA (all) &KBA	×
(3) Enhanced biodiversity protection	WDPA (all) &KBA biodiversity sensitive area	×
(4) Moderate soil protection	Severely degraded land	×
(5) Enhanced soil protection	Seriously degraded land	
(6) Full environmental policy	Enhanced biodiversity	×
	protection; enhanced soil	
	protection	
(7) Demand-side policy	Full environmental policy	Sustainable diet
(8) Supply-side policy	Full environmental policy	Advanced technology; trade openness for food
(9) Demand- and supply-side policy	Full environmental policy	Sustainable diet; advanced
		technology; trade openness for
		food

Full environmental policy map

Figure. Full environmental policy map (scenarios 6-9)

Research framework

Figure. Integrated assessment framework for estimating bioenergy potential

• AIM/PLUM: Asian-Pacific Integrated Model/Platform for Land-Use and Environmental Model. Global land use allocation model with spatial resolution of 0.5-degree (Hasegawa et al., 2017).

Results: Global technical potential

Figure. Global bioenergy potential in 2050 under each scenario

- Full environmental policy reduces global technical potential to 149 EJ.
- Larger impact of **biodiversity protection**: wider coverage and stronger implementation.
- Societal transformation measure (combining demand- and supply-side policy) could increase technical potential to 186 EJ.

Results: Regional technical potential

Figure. Regional bioenergy potential in 2050 under each scenario

Results: economic potential

Figure. Bioenergy supply curve

- Economic potential also reduces under environmental protection policies.
- Demand and supply-side measures could increase economic potential.
- US\$5/GJ: Baseline scenario 192 EJ/year; full policy scenario 110 EJ/year;
 Societal transformation measures: 143 EJ/year.

Conclusion and implication (1)

Technical potential and policies:

- Global technical bioenergy potential is reduced under environmental protection policy (from 245 EJ to 149 EJ).
- Demand- and supply-side policy could compensate some potential loss and increase the technical potential to 186 EJ.

Economic feasibility of bioenergy:

- We could provide an economic potential of 143 EJ/yr at US\$5/GJ with the efforts from societal transformation measures. Slightly lower than the median amount for 1.5°
- Economically feasible potential depends on carbon price and energy price (facing uncertainties).

Conclusion and implication (2)

IPCC SR on Climate Change and Land:
 Interlinkages between Land Degradation,
 Biodiversity loss, and climate mitigation.

- To achieve these multiple sustainable targets, important to combine with **societal transformation policies**.
- Relying heavily on bioenergy might cause trade-off with environment protection. We should keep exploring mitigation pathways that are compatible with terrestrial system protection.
- Uneven distribution of potential: a challenge to the logistic system and international trade.

Reference

- Hasegawa, T., Fujimori, S., Ito, A., Takahashi, K. and Masui, T., 2017. Global land-use allocation model linked to an integrated assessment model. *Science of the Total Environment*, 580, pp.787-796.
- Wu, W., Hasegawa, T., Ohashi, H., Hanasaki, N., Liu, J., Matsui, T., Fujimori, S., Masui, T. and Takahashi, K., 2019. Global advanced bioenergy potential under environmental protection policies and societal transformation measures. *GCB Bioenergy*, 11(9), pp.1041-1055.
- Rogelj, J., Popp, A., Calvin, K.V., Luderer, G., Emmerling, J., Gernaat, D., Fujimori, S., Strefler, J., Hasegawa, T., Marangoni, G. and Krey, V., 2018. Scenarios towards limiting global mean temperature increase below 1.5 C. Nature Climate Change, 8(4), p.325.
- Williamson, P., 2016. Emissions reduction: scrutinize CO 2 removal methods. Nature News, 530(7589), p.153.
- IPBES (2018) Assessment Report on Land Degradation and Restoration.
- Immerzeel, D.J., Verweij, P.A., van der Hilst, F.L.O.O.R. and Faaij, A.P., 2014. Biodiversity impacts of bioenergy crop production: a state-of-the-art review. Gcb Bioenergy, 6(3), pp.183-209.
- Van Vuuren, D.P., Van Vliet, J. and Stehfest, E., 2009. Future bio-energy potential under various natural constraints. Energy Policy, 37(11), pp.4220-4230.
- IPCC special report: Climate Change and Land, 2019, IPCC.

Thank you for your attention.

Sensitivity test of biodiversity index

Figure. Sensitivity to biodiversity index for bioenergy potential in 2050

