Source attributions of radiative forcing by regions, sectors, and climate forcers

⁴⁴ Achieving the low forcing levels strongly relies on negative CO₂ emissions under the scenarios we considered. GHGs are projected to contribute most of forcings at the end of this century, under all socioeconomic scenarios, with short-lived climate forcers (except methane) playing relatively minor roles. Our results indicate a crucial role of China for reducing the end-of-the-century forcing from high to low levels.

Introduction

- Understanding the contributions of radiative forcings by different regions, sectors, and climate forcers can help policymakers understand the relative importance of various sources for meeting the Paris Agreement temperature targets.
- We used the latest historical and future emissions data for a full suite of climate forcers, as well as land-use datasets.
- We applied a normalized marginal approach to quantifying the contributions of regions, sectors, and climate forcers under scenarios towards the forcing levels of 1.9 Wm⁻² and 2.6 Wm⁻² in 2100, a proxy of the 1.5 °C and 2 °C targets of the Paris Agreement, respectively.

Cicero-SCM esm-ssp119-allGHG

GICCv7.5.1 esm-ssp119-alIGH

CM4OPTv2.1 esm-ssp119-allGH

CM4OPTv3.0 esm-ssp119-allGH0

alRv2.0.0-alpha esm-ssp119-alIGH

FaIR1.6 esm-ssp119-allGHC

alRv2.0.0-alpha ssp11

MAGICCv7.5.1 ssp119

SCM4OPTv2.1 ssp11

Cicero-SCM ssp119

FaIR1.6 ssp11

Methodologies

SCM40PT v3.0

Figure 1: Temperature increases of SSP1-1.9 scenario produced by the SCM4OPT v3.0, compared to the results of RCMIP phase 2 (Nicholls et al., 2021).

Normalized marginal method (Li et al., 2016)

$$F_e = \left(F_{all} - F_{e,\epsilon}\right) / \sum_{e'} \left(F_{all} - F_{e'}\right)$$

 F_e indicates the marginal effect of the the forcing agent, F_{all} shows the forcing agent with global emissions as input while $F_{e,\epsilon}$ means the forcing agent with the global emissions after subtracting $e \cdot \epsilon$, $\epsilon = 0.001$, as input.

Xuanming Su, Kaoru Tachiiri, Katsumasa Tanaka, Michio Watanabe & Michio Kawamiya

 $F_{e',\epsilon}) \cdot F_{all}$

b-3) scenarios. Panel c shows the forcing increases in 2100, compared to the 2016 level under the 1.9 Wm⁻² (c-1) and 2.6 Wm⁻² (c-2) scenarios.

Results

Conclusion

• Our results indicated increases in forcing contribution from developing regions, such as China, India, the Middle East and North Africa, sub-Saharan Africa and other areas in Asia, in 2100 under both the 1.9 Wm⁻² and 2.6 Wm⁻² scenarios. • The negative CO₂ forcing is projected to contribute -0.52±0.32 Wm⁻² and -0.93±0.56 Wm⁻² under the 1.9 Wm⁻² and 2.6 Wm⁻² scenarios, respectively. This finding illustrates the importance of negative CO_2 emissions in achieving climate targets under the scenarios we considered. • Our results indicated that, to increase the likelihood of achieving the Paris Agreement temperature targets, China would play a larger role in lowering the end-of-the-century forcing than other regions.

