The 28th AIM International Workshop Session 4: Climate impact, adaptation, and sustainability

DAY2: September 14, 2022, 14:30-14:45

Delineating future climate change impacts for cross-scale adaptation strategies: A case study of Japan

Fei LIU*, Yoshifumi MASAGO

Climate Change Adaptation Strategy Research Section

Center for Climate Change Adaptation

National Institute for Environmental Studies, Japan

2022.09.14

E-mail: liu.fei@nies.go.jp

comprehensive Research on Projection of Climate Change Impacts nd Evaluation of Adaptation

BACKGROUND

Adaptation as a cross-cutting policy issue

Climate-eco-human systems are fully coupled

Water environment

Agriculture & food security

→Compound risks, overlapping challenges

→New understanding of interconnections

Natural disasters

Ecosystem services & biodiversity

Human health, life, & activity

→Coping with climate change is multi-dimensional and multi-sectoral.

SSS

→ Towards a comprehensive, cross-scale adaptation pathway Comprehensive, robust, transdisciplinary adaptation solutions over space

> This study proposes a framework for harmonizing and mapping different climate change impacts at regional to national scales based on spatially explicit models.

Forward-looking reference

The framework assists future policy-making and spatial planning in Japan's climate change adaptation to 2100.

DATA USED

Indicator selection criterion: (1) Geographical coverage Data availability

• S-8 Project

- SI-CAT Project
- Regional Adaptation Consortium Project ۲

temperature precipitation rice yield risk of pine wilt disease probability of bamboo distribution economic losses caused by flood Impact indicators (7) probability of landslide heat-related excess mortality emergency carriers due to heatstroke

Climatic parameters (2)

Standard 3rd mesh data (1km)

Size: 385,188 meshes

METHODOLOGY

Correlation matrix MIRC	C5 RCP2.6	RiceYield	PineWilt	HeatMortality	HeatStroke	FloodDamage	Landslide	Bamboo	Temperature	Precipitation	
changing climate and multiple impacts	RiceYield	1.00	0.11	-0.01	0.03	-0.04	0.02	-0.05	0.21	0.20	-0.8
	PineWilt	***	1.00	0.06	-0.46	0.10	-0.11	0.75	0.06	0.27	-0.6
н	eatMortality	***	***	1.00	-0.15	0.03	0.02	0.11	-0.08	-0.03	-0.4
	HeatStroke	***	***	***	1.00	-0.09	-0.12	-0.66	0.38	-0.04	-0.2
Flo	odDamage	***	***	***	***	1.00	-0.03	0.13	-0.02	0.02	- 0
Т	Landslide	***	***	***	***	***	1.00	-0.06	0.01	0.05	-0.2
	Bamboo	***	***	***	***	***	***	1.00	-0.18		0.4
	emperature	***	***	***	***	***	***	***	1.00	0.89	-0.6
F	Precipitation	***	***	***	***	***	***	***		1.00	-0.8

Analogous impact maps in 2100

Homogeneous impact zones (HIZs)

The correlations and their strengths among different impacts can drive the direction of co-occurrence.

9

🎯 SI83

Non-HIZ Areas

Regional heterogeneity for cross-cutting adaptation planning

spatial co-occurrence of multiple impacts at the regional scale

FINAL REMARKS

Based on spatially-explicit solutions, this study presented scenario-based blueprints for analyzing future multi-sectoral climate change impacts and further advancing adaptation planning in the context of Japan.

Summarization

- Exploration of the interconnection of changing climatic parameters and impact indicators;
- Identification and characterization of diverse future impacts' co-occurrences under different scenarios;
- Novel methods to account for spatial dependence and heterogeneity in multiple climate change impacts and their relationships.

Center for Climate Change Adaptation

Comprehensive Research on Projection of Climate Change Impacts and Evaluation of Adaptation

Thank you for your time and attention.

сĽ

Look forward to your questions and comments.

Presented by Fei Liu

E-mail: liu.fei@nies.go.jp

Reference:

F. Liu and Y. Masago*. Spatial heterogeneity of future climate change impacts and cross-cutting strategies for Japan.

Global Environmental Change. (submitted)