

Zero-Carbon Ammonia technology pathway analysis by IPACtechnology model in China

b. Energy Research Institute, Chinese Academy of Macroeconomic Research, Beijing, China.

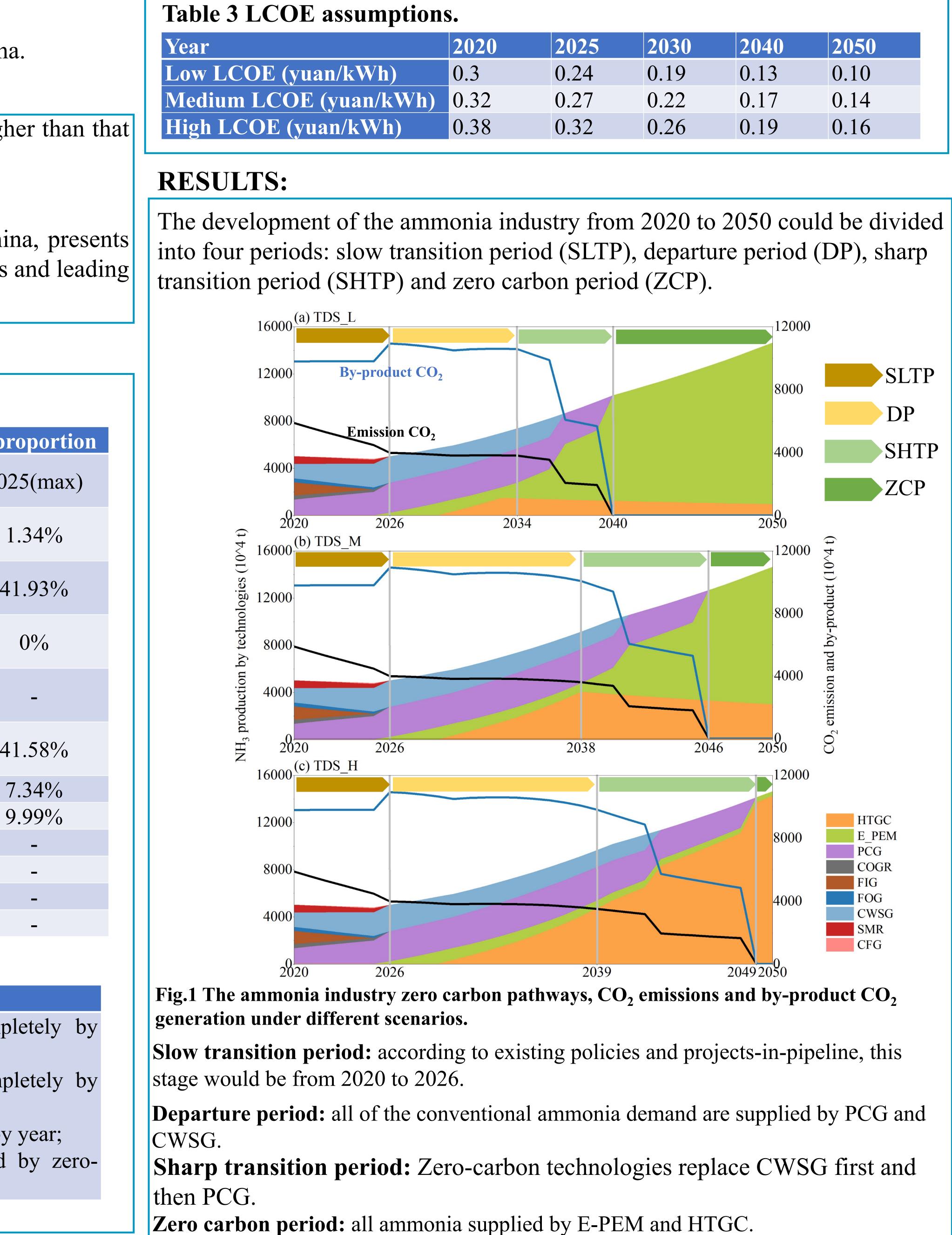
INTRODUCTION:

- of natural gas-to-ammonia route used in Europe and the United States.
- Ammonia could be used as zero-carbon energy in maritime.
- technologies for a zero-carbon transition.

METHODS:

Table 1 Class	sification of an	of ammonia production technology and proportions in 2020 and 2025.					
	Raw material	Technology	Acronym of technology	CO ₂ emission (t/tNH ₃)	By-product CO ₂ (t/tNH ₃)	technology pr	
Class						2020	202
	Gasificati Coal Wat Gasificati Fixed-bee	Circulating Fluidized-bed Gasification	CFG	0.76	3.07	0.32%	1
		Coal Water Slurry Gasification	CWSG	0.89	2.26	24.15%	4
Conventional		Fixed-bed Intermittent Gasification	FIG	1.58	2.71	22.39%	
technology		Fixed-bed Pure Oxygen Gasification	FOG	0.68	2.07	6.31%	
		Pulverized Coal Gasification	PCG	0.79	2.32	26.67%	67% 4
	Natural gas	Steam Methane Reforming	SMR	2.05	-	12.99%	7
	Coke oven gas	Coke Oven Gas Reforming	COGR	1.14	0.41	6.78%	9
	Alkaline Electrolysis		E_AE	_	-	0%	
Electrolysis	Proton Exchange Membrane Electrolysis		E_PEM	_	-	0%	
	Solid Oxide Ele	ectrolysis	E_SOE	_	-	0%	
Nuclear	High Temperate	ure Gas Cooled Reactor	HTGC	_	-	0%	

Table 2 Scenarios key assumptions.


Scenario	Classification	Acronym	Detail
	Low LCOE of solar electricity	TDS_L	a.FIG would withdraw capacity compl
	Medium LCOE of solar electricity	TDS_M	2025 at the latest;
Technology			b.FOG would withdraw capacity compl
Development			2030 at the latest;
Scenario	High LCOE of solar electricity	TDS_H	c.SMR and COGR would decline year by
			d.Energy demand for NH ₃ is supplied
			carbon technology.

Pianpian Xiang^a, Kejun Jiang^b

a. Faculty of Environment and Life, Beijing University of Technology, Beijing, China.

China is dominated by the coal-to-ammonia route, and the CO_2 generation per unit of NH₃ is much higher than that

This research analyzes the cost feasibility of a zero-carbon transition for the ammonia industry in China, presents detailed timelines, and indicates the impact of different renewable electricity costs on the key time points and leading

2025	2030	2040	2050
).24	0.19	0.13	0.10
).27	0.22	0.17	0.14
).32	0.26	0.19	0.16