The 30th AIM International Workshop NIES & Online (Hybrid) August 28-29, 2024

Global modelling for simultaneous achievement of "Deep Decarbonization", "Air Quality Improvement", and "Nitrogen Waste Reduction"

Tatsuya HANAOKA

Global Sustainability Integrated Assessment Section

Silva Herran Diego

Decarbonization Measures Assessment Section

National Institute for Environmental Studies

Next 20 years: Activities of Global *Decarbonization* and *Sustainability* Studies in AIM

Messages from IPCC AR6 WG3 Mitigation pathways and timing to achieve net zero emissions

□ We are not on track to limit warming to 1.5 °C.

□ Unless there are immediate & deep GHG emissions reductions across all sectors,

1.5°C is beyond reach.

80 70	2030 reduction targets (NDCs)		Category		GHG emissio (compare	ns reductions d to 2019)	Emissions milestones			
09			Odlegory		2030	2050	Net zero CO ₂	Net zero GHGs		
nissions (GtCO ₂ -eq 0 0 0 0 0		C1	Limiting warming to 1.5°C with no or limited overshoot	>50%	43% (34~60%)	84% (73~98%)	<mark>2050-2055</mark> (100%)	<mark>2095-2100</mark> (52%)		
30 BHS 20		C2	Return warming to 1.5°C after a high overshoot	>50%	23% (0~44%)	75% (62~91%)	2055-2060 (100%)	2070-2075 (87%)		
10 0		C3	Limiting warming to 2°C	>67%	21% (1~42%)	64% (53~77%)	<mark>2070-2075</mark> (91%)	 (30%)		
-10	2010 2015 2020 2025 2030 2035 2040 2045 2050						Source) IPCC AR	6 WG3 Table SPM.2		
	Trend from implemented policies Limit warming to 2°C (>67%) or return warming to 1.5°C (>50%) after a high overshoot, NDCs until 2030	7	How can	we sin	nultaneously	achieve				

the realization of the 1.5°C target ?

"Deep Decarbonization" and "Air Quality Improvement

How can SLCFs reduction measures contribute & accelerate to

Limit warming to 2°C (>67%)

Limit warming to 1.5°C (>50%) with no or limited overshoot

Past GHG emissions and uncertainty for 2015 and 2019 (dot indicates the median)

Source) IPCC AR6 WG3 SPM Figure SPM.4

2

Halving Global Nitrogen Waste at UNEA 4 (2019)

Source) Sutton et al. 2021, One Earth

Can we technically reduce global nitrogen waste by half?
How can we simultaneously achieve

"Deep Decarbonization" and "halving Nitrogen Waste" ?

Today's topics

We have been developing a global AIM/Enduse model to simultaneously analyze triple issues of "Global Deep Decarbonization", "Global Air Quality", and "Global Nitrogen Waste Reduction".

Today's talks are the following sectors among multiple-sectors.

- 1) Global renewable energy sector
- 2) Global non-energy & non-CO₂ sectors

The purposes are:

- It is necessary to promote the spread of renewable energy (solar & wind) to a large extent, which can contribute not only to the realization of "Deep Decarbonization" but also to the simultaneous solution of "Air Quality Improvement".
- ② Renewable energy is also needed to promote green hydrogen and green ammonia fuel.
- ③ In order to solve "Deep Decarbonization," "Air Quality Improvement," and "Nitrogen Waste Reduction" simultaneously, it is essential to take measures in the non-energy sector, which is called the hard-to-reduce sector.

Environment Research and Technology Development Fund S-20 Theme3 Sub-theme 1[FY2021 – FY22025] Title: Evaluation of Global SLCFs mitigation scenarios by Integrated Assessment Model

- Overview of Global Research Framework on Emissions Projections in S-20-3(1) -

Environment Research and Technology Development Fund 5-2301 [FY2023 – FY22025] Title: Comprehensive Japanese Nitrogen management for reducing nitrogen waste

AIM/Enduse v3.0: Overview of the AIM/Enduse[Global] model

- Bottom-up type model with detailed technology selection framework with optimizing the total system cost
- Recursive dynamic model (=Calculating year by year)
- Analyzing effects of technological transitions and policies such as carbon/energy tax, subsidy, regulation and so on.
- Global 32 regionals, especially focusing on Asia, such as Japan, China, India, Korea, Indonesia, Thailand, Vietnam, Malaysia, etc.

	Sector		CH₄	N ₂ O	SO ₂	NOx	BC	OC	PM ₁₀	PM _{2.5}	CO	NMVOC	NH ₃	HFCs	PFCs	SF6	CFCs	HCFCs	Hg
	Power	~	~	~	~	~	~	~	~	~	~	~	~						~
	New energy	~	~	~	~	V	~	~	~	~									
	Fuel mining		~									~							
The model was	Industry	~	~	~	~	~	~	~	~	~	~	v	r						
updated to better	Transport	~	~	~	~	~	r	~	~	~	~	v	r						~
accommodate the	Building	~	r	V	~	~	V	~	~	~	V	~	r						~
non-energy and	Waste		~	V								r							
non-CO sectors	Agriculture		~	~									~						
	Fgas													~	v	v	~	~	~
	Others	~	~	~	~	~	~	~	~	~	~	~	~						

Note1) ✓ shows the coverage of target gases in the model Note2) Within the same gas-type,

v

2nd major emitting sectors

most major emitting sector

relatively emitting sectors

minor sectors

S20 scenario design by linking AIM/Enduse v3.0 & Global demand models

					Today's										
Scenario	Overview	Code	Air pollution End-of-	Toda	y's	Ene	rgy related GHG n	neasures			Energy related SLCF measures	Non-ener	gy related SLCFs	measures	SLCF
			pipe enhance	PWR REN enhance	PWR CCS enhance	All sectors Coal phasedown	All sectors Efficiency enhance	Demand sectors Electrification	PWR / IND / TRT Hydrogen	PWR / IND / TRT NH3 fuel	BLD ∙ TRT BMS phasedown	AGR enhance	Waste enhance	F-gas enhance	Barriers
Worst case	Technology fixed	Fixed													
Reference	BaU (SSP2)	BaU	*	*			*	*				*	*	*	
EoP	BaU+EoP	BaU-EP	**	*			*	*				*	*	*	
Low Carbon	2050 global GHG halving	LC	**	**	**	**	**	**				**	**	**	
	Adv2050CN / Dev2060CN	DD-REN	**	***	**	***	***	***	**			**	**	**	
Deep Decarbonization	Adv2050CN / Dev2060CN	DD-CCS	**	**	***	**	***	***	**			**	**	**	
	Adv2050CN / Dev2060CN	DD-INV	**	***	**	**	***	**	***	*		**	**	**	
	Adv2050CN / Dev2060CN + SLCF enhance	DD-REN-S	**	***	**	***	***	***	**		***	***	***	***	
DD +SLCF enhance	Adv2050CN / Dev2060CN + SLCF enhance	DD-CCS-S	**	**	***	**	***	***	**		***	***	***	***	
	Adv2050CN / Dev2060CN + SLCF enhance	DD-INV-S	**	**	**	**	***	**	***	*	***	***	***	***	
DD +SLCF enhance +EoP enhance	Adv2050CN / Dev2060CN + SLCF enhance + EoP enhance	DD-REN-S-EP	***	***	**	***	***	***	**		***	***	***	***	

Note1) "Low-Carbon" and "Deep-Decarbonization" are equivalent to 2 degree and 1.5 degree target

Note2) ★ represent mitigation intensities

- ★ (if cost effective) measures will be introduced spontaneously based on the inertia from the past to the present trends.
- ★★ (Toward policy targets, mitigation goals etc) measures will be introduced in phases, step by step
- ★ ★ ★ maximum reduction measures will be introduced in both developed and developing countries by 2060, regardless of sectors

Note3) Socio-economic assumptions such as POP, GDP are based on SSP2

Objectives: the Agriculture Sector

\Box The agriculture sector is **a major source of N₂O, NH₃ and CH₄ emissions**, especially in Asia.

- > N₂O need to be reduced as one of long-lived GHGs & Ozone Depleting substance (ODS)
- > CH₄ need to be reduced as one of short-lived climate forcers (SLCFs)
- NH₃ need to be reduced as one of the sources of PM_{2.5}
- $> N_2O$ and NH_3 emissions need to be reduced as one of the sources of reactive nitrogen

However, the agricultural sector is considered as one of the "hard-to-abate" sectors. But how hard?

The objectives of this study are to

- 1) examine the **Business-as-Usual scenario** of CH₄, N₂O, and NH₃ emissions up to 2060 in the agricultural sector
- examine the technological maximum mitigation scenario of CH₄, N₂O, and NH₃ emissions in order to contribute to discussions of both climate mitigation targets (i.e. achieving net-zero GHGs) and nitrogen reduction targets (i.e. halving nitrogen waste).

AIM/Enduse3.0: Example of maximum mitigation of N₂O, NH₃ & CH₄ in Agriculture

- Development of calculation sub-module of agricultural emissions -

- We fully followed the IPCC inventory guidelines to estimate emissions projections
- □ We estimated N_2O , NH_{3} , and CH_4 in 32 global regions to cover all emission sources in the agricultural sector. (The figure below shows an example of the calculation flow for livestock manure management in accordance with the IPCC guidelines.)
- We estimated the BaU scenario of activity data (heads, ha, etc.) and associated emissions, based on historical trends and correlations between activity data and socioeconomic data.
- To explore maximum technological mitigation potentials, we assumed maximum diffusions of currently available mitigation measures by 2060 worldwide (in both developed and developing countries)

Estimation flow of manure management (direct N₂O) Estimation flow

Note1) We calculated by livestock: "dairy cattle", "beef cattle", "swine", egg-laying hen", "broiler", "buffalo", "goat", "sheep", "others (horses, camels, donkeys, mules, llamas)", and "other poultry (ducks, turkeys)".

Note2) For "others" and "other poultry", the number of horses, camels, donkeys, mules, llamas, ducks, and turkeys are counted separately, and then aggregated as "other" and "other poultry" when calculating emissions.

Estimation flow of manure management (indirect N₂O)

10

Settings of reduction efficiency of currently available mitigation measures

Technological measures are assumed to be introduced to the maximum (100%) worldwide (i.e. not only in developed countries but also in developing countries) by 2060.

(Note: Only the introduction of methane recovery and decomposition masks is an exception.)

- Activity reductions (e.g. chemical fertilizers) due to productivity improvement are assumed to be up to 30% reduction worldwide by 2060.
- Impact of behavior change (e.g. diet change from vegetables to meats and vice versa) can be considered in this framework
- □ Conversion to intensive grazing is assumed to be up to 10% reduction worldwide by 2060
 - e.g.)

Enteric fermentation

- 1) Breeding with low methane generation cattle (around 10% CH₄ reduction)
- 2) Improvement of livestock feeding management (around 10% CH₄ reduction)
- 3) Addition of methane generation inhibitors to feed for livestock (around 20% CH₄ reduction)
- 4) Introduction of CH_4 recovery and decomposition masks to cattle (around 50% CH_4 reduction)

Manure management

- 1) Use of feed for livestock to improve amino acid balance (around 20% N_2O reduction)
- 2) Conversion of Livestock Waste Disposal Methods (around 50% CH_4 reduction and 20% N_2O reduction)
- 3) Implementation of advanced processing and other reduction measures (around 20% CH₄ reduction and 20% N₂O reduction)
- 4) intensive grazing cattle (around 10% CH_4 reduction and 10% N_2O reduction)

Agricultural soils

- 1) Reduction of fertilizer application (around 30% N_2O reduction by inorganic fertilizer and 20% N_2O reduction by organic fertilizer)
- 2) Microorganism utilization technology to control N_2O emissions (around 30% N_2O reduction)
- 3) Application of chemical fertilizers with nitrification inhibitors (around 30% N_2O reduction)

11

Agriculture sector: major non-combustion "Hard-to-Abate" sector - Triple challenges to climate change, nitrogen waste & air quality: CH₄, N₂O, NH₃ -

- The maximum global CH₄ mitigation is up to 65% by 2060 compared to BaU. (35% residual emissions, corresponding to about 1.5 GtCO₂eg)
- The maximum global N₂O mitigation is up to 37% by 2060 compared to BaU. (63% residual emissions, corresponding to about 2 GtCO₂eq)
- The most important point is that the main sources of CH_4 , N_2O and NH_3 emissions and the characteristics of mitigation measures are different.
- NH₃ reductions from cattle, buffalo, swine in manure management and chemical & organic fertilizer in agricultural soils are important.

AIM/Enduse v3.0 - Overview concepts of Domestic Wastewater sector & Domestic Solid Waste sector -

Domestic Wastewater sector

Municipal Waste sector

Renewable Energy Sector

- Model for estimating the resource availability at global scale of variable renewable energies (solar and wind).

- **D** Resource availability estimated as the energy potential for solar photovoltaics (PV), onshore and offshore wind power.
- **D** Based on latest geo-referenced data of climate (solar radiation, wind speed), topography (elevation, slope), land cover, among others.
- □ Considers restrictions on the land suitability and technology performance.
- Energy potential outputs by grid cell (~0.28km) aggregated into global regions; and by hour aggregated into annual values categorized by grade (annual average capacity factor).

Renewable Energy Sector - Resource availability at global scale of variable renewable energies (solar and wind).

Thank you for your attention!

Acknowledgment

This research was performed by the Environment Research and Technology Development Fund S-20-3 [JPMEERF21S12030] and 5-014 [JPMEERF20235001] of the Environmental Restoration and Conservation Agency provided by the Ministry of Environment of Japan.

