An Integrated Assessment of Global Warming Mitigation and Adaptation and the Development of Multi-regional and Multi-sector IAM - Project Phoenix -

Shunsuke MORI (RITE, Tokyo Univ. of Sci.) Toshimasa Tomoda, Hiromi Yamamoto, Keigo Akimoto, Koji Tokimatsu, Takanobu Kosugi, Ayami Hayashi, Takashi Honma (RITE) Integrated Assessment Models as a platform of the policy and technology assessments

- Integrated assessment models (IAMs) have been developed since 1990s as a powerful tool for this subject. *However*,
- Economic models and technology assessments deal with near future (until 2020) while existing IAMs mainly talk about near 2100.
- Economic models and technology assessments mainly analyze country level while existing IAMs mainly aggregate the world into 10-15 regions.
- Globalization, civilization, penetration of IT, industrial structure changes etc. are not well discussed in the global environmental context.

Project Phoenix - Paths toward Harmony Of Environment, Natural resources and Industry complex –

- Developed by the RITE Research Institute of Innovative Technology for the Earth
- Supported by the Ministry of Economy, Trade and Industry as a part of an "International Research Promotion Funds for the Global Environment"
- A project for 2002-2006 (five years)

### Structure of Project Phoenix – three WGs

Multi region and sector model GTAP

- + Easy to connect with GAMS
- Dynamics
- Aggregated energy technologies and sources

### (Model development WG)

Energy demand, economic activities, structural changes

- + Data availability (trade and economic statistics)
- Societal structural change

(Warming factors WG)

### Assessments of global warming

+ Availability on food, water, climate change studies
- Uncertainties of global warming damages

(Warming impacts WG)

K: Mitigation investment ex-post expenditure ex-ante investment cost-benefit integrated assessments

G : Energy demand transportation public and household long-term growth patterns structural changes

H: Assessments of regional options CGS, distributed energy systems renewable sources recycling and waste E : Assessments of global warming water resource ocean, river and lakes land use food production vegetation etc.

F: Food supply and demand

A: Economic activities GTAP model multi regional and multi-sectoral

- CGE model
- static model
- energy flow and technologies should be integrated

B: Energy flow model existing research activities in RITE DNE-21 and LDNE-21 Energy demand scenarios should be provided based on the economic and societal story-lines.

I: Regional structure change civilization social structure modeling methods J: Biosphere human health impacts on biosphere

D: Assessments of regional climate change GCM data GIS

C: Assessments of Global climate change simple climate

### (MAGICC, BERN)

L: GHG emission scenario detailed regional emission scenario

> subjects in 2004 subjects after 2005

# Tentative IAM structure and results

- **GTAP** (Purdue Univ.) incorporates more than 60 regions and sectors and is still being expanded.
- GTAP is designed to assess the international trade and production impacts of various policy options.
- GTAP-EG includes energy flow subsystems.
- GTAP provides comprehensive and consistent world economic data base.

### In Phoenix Project,

- We aim at the assessments of the certain technologies such as energy conversion technologies, carbon capture options, biomass production and utilization, etc.
- Dynamic model simulation is also needed.
- We impose the bottoming up technology model into the GTAP model simplifying the frame, if necessary.

### Conceptual Frame of the Model

|                 |           |          | Intermediate Inputs                                                        |                |                |               |                                             | nal dem         |                     |                      |   |
|-----------------|-----------|----------|----------------------------------------------------------------------------|----------------|----------------|---------------|---------------------------------------------|-----------------|---------------------|----------------------|---|
|                 |           |          | Non-e<br>sec                                                               | energy<br>tors | Energy s       | sectors       | trade                                       | Invest<br>ments | Con<br>sump<br>Tion | Output               |   |
|                 |           |          | 1 2                                                                        |                | Primary        | Second<br>ary | m                                           | I               | С                   | Q                    | I |
|                 |           |          | X11=                                                                       | X12=           |                |               |                                             |                 | C1                  |                      |   |
|                 |           | V        | A_Epre                                                                     | = (cap         | ital and       | 0             | m1                                          | 1               |                     | Q1                   |   |
| Int. energy pro |           |          | abor costs of primary<br>energy extraction and<br>oduction costs)+(others) |                |                |               |                                             |                 |                     |                      |   |
|                 |           |          |                                                                            |                |                | 0             | VA_E= (capital and<br>costs of energy conve |                 |                     | nd labor<br>nversion |   |
| V=1             | f(K,L,E)- | (second  | lary —                                                                     | U<br>V - D     |                | <u></u>       | tech                                        | nolog           | ies)+(o             | others)              |   |
| e               | nergy inp | out cost | s) <mark>∎</mark>                                                          | PeE2           |                | 0             |                                             | 0               | PeEc                | PeE                  |   |
| Value           |           | K        | Pk·K1                                                                      | Pk · K2        | VA_pre         | VA_E          |                                             |                 |                     |                      |   |
| Added           |           | L        | PL·L1                                                                      | PL·L2          |                |               |                                             |                 |                     | Y                    |   |
| Output          |           | Q        | Q1                                                                         | Q2             | EC_pre=<br>PpS | EC=<br>PeE    |                                             |                 |                     | Q                    |   |

(Total secondary energy supply)= (Conv. Eff.) \* (primary energy inputs)

### Integration of energy flow

|    |         |     |                      | Intermediate inputs                   |              |     |                     |     |             | Fir         | Final demand          |                |                           |           |              |               |
|----|---------|-----|----------------------|---------------------------------------|--------------|-----|---------------------|-----|-------------|-------------|-----------------------|----------------|---------------------------|-----------|--------------|---------------|
|    |         |     | Non energy sectors   |                                       |              |     | Energy sectors (e') |     |             |             |                       | Trade          | Invest                    | Consump   |              |               |
|    |         |     | (j)                  |                                       |              |     |                     |     |             |             | ment                  | tion           |                           |           |              |               |
|    |         |     | EIS                  | Y A                                   | GR           | SER | CRU                 | OTR | COL         | GAS         | OIL                   | ELE            | М                         | Ι         | С            | Q             |
| Ι  | Non-    | EIS |                      |                                       |              |     |                     |     |             |             |                       |                |                           |           |              |               |
| n  | energy  |     |                      |                                       |              |     |                     |     |             |             |                       |                |                           |           |              |               |
| t  | sectors | Y   |                      | a0.                                   |              |     |                     |     | $b_{ie}l$   | $EC_{e't}$  |                       |                | $X_{i,t} - m_{i,t}$       | $I_{i,t}$ | $C_{i,t}$    | 0             |
|    | (i)     | AGR |                      | $u_{j} \boldsymbol{\mathcal{L}}_{j},$ | <i>,t</i>    |     |                     |     | ic          | с ,         |                       |                | 1,1 1,1                   | .,.       | ι,ι          | <b>X</b> 1, t |
| i  |         | SER |                      |                                       |              |     |                     |     |             |             |                       |                |                           |           |              |               |
| n  | Energy  | CRU |                      |                                       |              |     |                     |     |             |             | EC <sub>CRUOILt</sub> | 0              |                           |           |              |               |
| р  | sectors | OTR |                      | 0                                     |              |     |                     |     |             |             |                       |                |                           |           | 0            |               |
| u  |         | COL |                      |                                       |              |     |                     |     |             |             |                       | EC FUE         |                           |           |              | FC            |
| t  |         | GAS | EC                   | _ /                                   | ~ <b>(</b> ) |     |                     | (   | )           |             |                       | $-e_s$ , ELE,t | $P_{e,t} \cdot E_{e,M,t}$ | 0         | EC           | $EC_{e,t}$    |
| S  |         | OIL | $EC_{s}$             | $j,t = \epsilon$                      | $e_{sj}Q_j$  | i,t |                     |     |             |             | 0                     |                |                           |           | $LC_{s,C,t}$ |               |
|    |         | ELE |                      |                                       |              |     |                     |     |             |             |                       | 0              |                           |           |              |               |
| VA | capital | K   | <i>V</i> –           | - K                                   | 1 <b>I</b>   |     |                     |     | V           |             |                       |                |                           |           |              |               |
| DD | labor   | L   | $\mathbf{v}_{j,t}$ – | $-\mathbf{n}_{j,t}$                   | $	+ L_{j,}$  | t   |                     |     | • e         | ', t        |                       |                |                           |           |              |               |
| (  | Dutput  | Q   | ļ                    | $Q_{j,t} = \mathbf{Q}$                | $Q_{i,t}$    |     |                     |     | $EC_{e',t}$ | $=EC_{e,t}$ |                       |                |                           |           |              |               |

|     | Non e | nergy       | sector | s (j) |     | Energy fl |     |     |                        |                 | Trade  | Consump          | Produc    | Prices    |
|-----|-------|-------------|--------|-------|-----|-----------|-----|-----|------------------------|-----------------|--------|------------------|-----------|-----------|
|     | EIS   | Y           | AGR    | SER   | CRU | OTR       | COL | GAS | OIL                    | ELE             |        | tion             | tion      |           |
| CRU |       |             |        |       |     |           |     |     | E <sub>CRU,OIL,t</sub> | 0               |        |                  |           |           |
| OTR |       | (           | )      |       |     |           |     |     |                        |                 |        | 0                |           |           |
| COL |       |             |        |       |     |           |     |     |                        | E               | E      |                  | $E_{e,t}$ | $P_{e,t}$ |
| GAS |       | $E_{\perp}$ |        |       |     | С         | )   |     | 0                      | $-e_s$ , ELE, t | -e,M,t | $E_{s,C,t}$      |           | ,         |
| OIL |       | <u> </u>    | ,t     |       |     |           |     |     |                        |                 |        | ~ , <b>C ,</b> , |           |           |
| ELE |       |             |        |       |     |           |     |     |                        | 0               |        |                  |           |           |

# Energy flow in DNE-21 model:

simplified structure will be imposed.



## Aggregation of GTAP data into 18 regions and 18 nonenergy sectors 18 regions

| USA | USA                                                                      | CAF | Middle African countries                               |
|-----|--------------------------------------------------------------------------|-----|--------------------------------------------------------|
| CAN | Canada                                                                   | SAF | South African countries                                |
| MCM | Middle American countries                                                | JPN | Japan                                                  |
| BRA | Brazil                                                                   | CHN | China, Hong kong, Taiwan                               |
| SAM | Peru, Argentina, Chile, Uruguay<br>and other south American<br>countries | IND | India                                                  |
| WEP | West and middle European countries                                       | ASN | Asia NIES countries                                    |
| EEP | Hungary, Poland and other east<br>European countries                     | TME | Turkey and Middle-East countries                       |
| FSU | Former USSR                                                              | ANZ | Australia, New Zealand and<br>Pacific Island countries |
| NAF | North and Middle African countries                                       | XAP | Other countries                                        |

## Aggregation of GTAP data into 18 regions and 18 nonenergy sectors 18 non-energy sectors

| I_S | Iron and steel            | LUM | Wood, Pulp and printing                |
|-----|---------------------------|-----|----------------------------------------|
| CRP | Chemical industry         | CNS | Construction                           |
| NFM | Non-ferrous metals        | TWL | Textiles, wearing, apparel and leather |
| NMM | Non- metaric materials    | OMF | Other manufacturings                   |
| TRN | Transport equipments      | AGR | Agricultural products                  |
| OME | Other machinary           | T_T | Transportation                         |
| OMN | Minings                   | ATP | Aviation                               |
| FPR | Food Products             | BSR | Business services                      |
| PPP | Paper, pulp and printings | SSR | Social services                        |

## Current Stage:

Two preliminarily dynamic models are developed.(1)18-region and 18-sector model with 2 energy sectors (Primary and secondary)

(2) 1-region and 18-sector model with 6 energy sources and 4 power generation technologies

These two are being integrated.



Preliminarily Simulation Results: GDP 18 region - 18 sector with 2 energy input model **Energy Consumption** 



Preliminarily Simulation Results: Final Energy Concumption 18 region - 18 sector with 2 energy input model



Preliminarily Simulation Results: Outputs by sector (Japan) 18 region - 18 sector with 2 energy input model

#### WEP Sectoral Domestic Production ∎I\_S ■ CRP 4500 □ NFM □ NMM 4000 ■ TRN OME Domestic Production 3500 US\$) 3000 OMN □ FPR 2500 10m illion PPP LUM 2000 1500 TWL 1000 ■ OMF AGR 500 ■ ATP 0 1997 2007 2017 2027 2037 2047 2057 ■ BSR □ SSR Year

Preliminarily Simulation Results: Outputs by sector (WEP) 18 region - 18 sector with 2 energy input model USA Sectoral Domestic Production



Preliminarily Simulation Results: Outputs by sector (USA) 18 region - 18 sector with 2 energy input model

### CHN Sectoral Domestic Production



Preliminarily Simulation Results: Outputs by sector (CHN) 18 region - 18 sector with 2 energy input model



Preliminarily Simulation Results: Outputs by sector (India) 18 region - 18 sector with 2 energy input model



Preliminarily Simulation Results:GDP (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



Preliminarily Simulation Results:electric power price (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



Preliminarily Simulation Results:carbon emission (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



**Preliminarily Simulation Results:** 

Shadow price of carbon emission (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



### **Preliminarily Simulation Results:**

Power generation mix without carbon policy (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



### **Preliminarily Simulation Results:**

Power generation mix with carbon policy (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy



Preliminarily Simulation Results:

Impacts of carbon policy; loss of sector products in 2047 (USA) 1 region - 18 sector with 6 energy input model with and without carbon emission stabilization policy

## Integration : Scenario Generation and Simulations



### **Structure Analysis for the Narrative Scenario Generation**



## Scenario Generation using X-I method -1

- Originally developed by Gordon (1965) to see the complicated interactions among the events .
- (1) Estimating the probability of occurrence of each technology
- (2) Evaluate the degrees of impact among events
- (3) Revise occurrence probabilities using Monte Carlo simulation.

Dalky pointed out the mathematical consistency in 1972

Duperrin and Godet (Duperrin, 1975) proposed a new method to guarantee the mathematical consistency.

Kaya et. al. (Kaya, 1979) expanded their method;

- (1)using causality probabilities instead of conditional probabilities based on the Markovian probability model.
- (2)sequential linear programming method to assess the range of high dimensional state probabilities.

Dynamic expansion has been developed (Mori, 1984).

## Scenario Generation using X-I method -2

1. Determine the set of events to be considered during the forecasting period.

2. Define the exogenous conditions affecting the event occurrences one-sidedly.

3. Estimate the occurrence probability of event i (i=1,2...n) at the end of the forecasting period P(i).

4. Estimate the "impact probability" P(i j) : the occurrence probability of event j given the condition that the event i occurs solely in the beginning of the period.

5. Calculate the two-dimensional probability applying Markovian transition model.

6. Construct the mathematically consistent probabilities modifying estimated two dimensional probability data set by

min.J = 
$$\sum_{i} w_{i} \{ P(i) - P^{*}(i) \}^{2} + \sum_{j \neq i} w_{ij} \{ P(i, j) - P^{*}(i, j) \}^{2}$$

where the consistent probabilities  $P^*(i)$ ,  $P^*(i,j)$  are the linear combinations of n-dimensional state probabilities  $\{ k \}$ .

## Scenario Generation using X-I method -3

7. Calculate the ranges of  $\{k\}$  using linear programming.

 $\lim_{max.} \pi_{k} \text{ subject to } P^{*}(i) = \sum_{k} d_{i}^{k} \pi_{k}, P^{*}(i, j) = \sum_{k} d_{i}^{k} d_{j}^{k} \pi_{k}, \sum_{k} \pi_{k} = 1, \pi_{k} \ge 0$ 

 $\pi_k$ :n-dimensional probability  $P(d_1^k, d_2^k, \Lambda d_n^k)$   $(k = 1, 2, \Lambda 2^n)$ .  $d_i^k = 1$  if even i occurs in the state k else  $d_i^k = 0$ .

ex. Nuclear power technology forecasting for 1990-2010 (Mori and Kaya, 1984)

(1)FBR: some FBR(Fast Breeding Reactor)s are already developed.

(2) ATR: some ATR(Advanced Thermal Reactor)s are already developed.

(3)CAND: some CANDU-PHW reactors are developed.

(4)LWR-Pu: share of Plutonium recycling comes to 33% of total LWR fuel.

(5) Repro: some reprocessing systems for LWR-Pu or ATR are operating.

(6) Cent: some centrifugal separation plants are developed.

(7) Coal: the share of coal fired power generation comes to more than 20% of world electric power supply.

### Example of X-I method - continued

| 1990 |                          | (0000000)<br>0.688                |                                 |
|------|--------------------------|-----------------------------------|---------------------------------|
| 1995 | (0000001)<br>.2242       | (0000000)<br>A: .2545<br>B: .2751 | (0000010)<br>.1837              |
| 2000 | (0000011)<br>.42-1.0     |                                   | (0001110)<br>1293               |
| 2005 | (0000011)<br>.3281       |                                   | (1001110)<br>.3382              |
| 2010 | (1000111)<br>.0917       |                                   | (1001110)<br>.0912              |
|      | Scenario A               | S                                 | Scenario B                      |
|      | upper:occurrence sta     | ate lower: ra                     | nge of probability              |
|      | Scenario A<br>Scenario E | A: Coal-nucle<br>B: Nuclear or    | ear scenario<br>iented scenario |

Dynamic scenario sequences from 1990-2010

(1) FBR
(2) ATR
(3) CAND
(4) LWR-Pu
(5) Repro
(6) Cent
(7) Coal

# **Expected outcomes**

- The changes of the energy supply-demand systems, industry structure changes and the international industry allocation scenarios will provide the basic information to assess the policy measures.
- The outcomes of the project will give the helpful information on the energy technology development strategies.
- The most preferable burden sharing scenario on the carbon emission reduction can be generated.
- Industry policies on the R&D on the energy and environmental technologies, technology transfer, and other industry strategies can be assessed under the global warming mitigation policies.