# How to model the future scenario for China with a Dynamic Economy

Kejun JIANG Kjiang@eri.org.cn

Energy Research Institute, China

Workshop on GHG Stabilization Scenarios Tsukuba, Japan on January 22-23, 2004



#### CO2 emission in China











## **Energy Production and Consumption in China**





#### **IPAC-Emission**









## GDP Per Capita





## Average living area per capita, m<sup>2</sup>



## Car Ownership













# **Economy Target of China in 2020**

- Government Target: Overall wealthy society
  - On the basis of economy structure optimal and increasing profit, GDP will be four time in 2020 comparing with that in 2000, realize fundamental industrialization";
  - Take a new way for industry development;
  - "continually increase ability for sustainable development";

#### Framework of IPAC



# Co-benefit to Consistency: climate and development

- **◆ Identify domestic development plan**
- **◆ Domestic energy/land use policies**
- **◆**Looking for consistency
- → Help developing countries for their own purpose based on the consistency



## IPAC-AIM/Technology:





Accumulated Emission Reduction, Million t-C

## Marginal Abatement Cost: IPAC-Emission model



## AIM/Technology



# Impact mitigation on Chinese economy

|                       | 2010   | 2020   | 2030   | 2050   | 2075   | 2100   |
|-----------------------|--------|--------|--------|--------|--------|--------|
| GDP loss, %           |        |        |        |        |        |        |
| 650                   | -0.10% | -0.10% | 1.20%  | 1.10%  | 0.90%  | 0.90%  |
| 550                   | -0.20% | -0.20% | 1.90%  | 2.00%  | 2.00%  | 2.40%  |
| 450                   | 1.40%  | 2.30%  | 2.90%  | 3.70%  | 3.90%  | 4.80%  |
| Per Capita Emission   | -0.20% | -0.20% | -0.10% | -0.10% | 0.70%  | 1.50%  |
| Carbon Intensity      | -0.20% | -0.20% | -0.10% | -0.10% | -0.20% | -0.20% |
| CO2 reduction rate, % |        |        |        |        |        |        |
| 650                   | -1.50% | -1.70% | 18.80% | 22.60% | 27.70% | 30.50% |
| 550                   | -2.60% | -2.40% | 29.10% | 40.60% | 51.60% | 58.00% |
| 450                   | 14.70% | 30.00% | 41.60% | 62.40% | 69.00% | 75.00% |
| Per Capita Emission   | -2.60% | -2.40% | -1.90% | -1.80% | 27.30% | 48.50% |
| Carbon Intensity      | -2.60% | -2.40% | -1.90% | -1.80% | -4.00% | -3.10% |

#### Marginal Abatement Cost: IPAC-SGM model



## Marginal Abatement Cost: IPAC-SGM model



## An easy way

- More flexible market-multilateral/bilateral/global
- **◆ Technology R&D/international collaboration**
- **Domestic policies**
- **◆** Criticism system: reporting

#### Next

- **◆** Modeling focus on technology change and domestic policies: demand from energy planning
- **◆ Driver analysis by using IPAC-AIM/Technology,** join the forum for energy scenario
- ◆ Study for city or province: Beijing, Chongqing, Taiyuan, Ningxia
- **♦** After Kyoto
- **→** Multi-gas analysis

# UK: A Low Carbon Economy

60% emission reduction by 2050, and hope other developed country join

By using various countermeasures

Not much impact on economy: 0.5%-2% in 2050

#### **UK:**Countermeasures

- **Emission trading: volunteer trading system**
- Energy efficiency increasing:companies, household and public utilities
- Natural gas import
- **Extension of competitive energy market**
- Technology innovation: hydrogen, renewable energy, CHP and new energy conservation technology
- Work together with I8 and EU for technology R&D

## UK: technologies

- Offshore power generation(Wave, tide and wind)
- **E** CHP(local biomass, waste, wind, tide)
- Mini-power generation(polygeneration, feul cell, PV)
- **New building design(0 emission)**
- **Fuel cell**
- **Transport**(Hybrid, bio-fuel, hydrogen)
- **Nuclear fusion**

## **Others**

- Similar countermeasure package
- Different target(only for Kyoto)
- US, Japan, EU

## Policies contribute to climate change

- Economic policies to promote tertiary industry
- Clean energy supply policy: natural gas
- Renewable energy development: national wind plan, hydropower
- Clean coal technology promotion
- High efficiency technology: green lighting, energy efficiency standard
- Clean production
- Close low efficiency and small scale factory
- Technology R&D: 863 high-tech project, 973 research plan
- Emission standard
- ✓ SO2 emission market

## What's for China

- Taking action in some sense
- But hard to make political commitment
- Policy implementation
- Not difficult to combine climate change and domestic development
- Should prepare 20 year national plan, and think about 2050 long-term strategy
- China follow well the experience on energy policies and countermeasure
- Technology is difficult/important
- ✓ Discussion about technology transfer/localization

## 2004 is important

- "Eleventh-Five Year Plan"
- "National Climate change strategy"
- Energy forecasting/scenario
- ✓ Integrating with local development/at early time

## Modeling activities

- Think about near or medium term policy implementation
- ✓ Technology diffusion, R&D
- What's the impact of UK proposal
- ✓ After Kyoto: meaning of Participation/ new framework