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1. Introduction

Warning from scientific communities

>>> Climate Impact reduction by
mitigation and adaptation

>>> UNFCCC and Kyoto Protocol

Flexibility of mitigation measures
Where and when

Kyoto GHGs / Multigas basket target
CO2,CH4,N20,HFCs,PFCs,SF6
Sinks (LULUCF, engineering)



2.Climate Stabilization Target and

Possible Indicators

Table 1. Indicators for attribution to climate change and their characteristics
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Figure 2. Indicators for attribution to climate change (adapted from ECOFYS)

5
Source : FCCC/SBSTA/2002/INF.14



3.GRAPE Model
5 Modules
Long-term (-2100), 10 global regions
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F-Gas Characteristics (1PCC WGI TAR)

conc.(#1) emis.(#2) life GWP(100yr) rad. eff.

(ppt)  (Gg/yr) (years) (W/m2/ppb)
HFC23 14 7Gg 260 12000 0.16
HFC134a 7.5 25Gg 13.8 1300 0.15
CF4 80 15Gg >50000 5700 0.08
SF6 4.2 6Gg 3200 22000 0.52

(#1)1998 , (#2)late 1990s

Concentration vs. Emission
- Lifetime

Radiative forcing vs. Concentration
- Radiative Efficiency :



Atmospheric conc. of HFCs and HCFCs (IPCC WG1 TAR)
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Atmospheric conc. of CF4 (IPCC WG1 TAR)
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Figure 4.4: Abundance of CE, (ppt) over the last 200 years as
measured in tropospheric air (open diamonds), stratospheric air (small
filled diamonds), and ice cores (open squares) (Harnisch ef al., 1996;
1999).



Atmospheric conc. of SF6 (IPCC WG1 TAR)
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Figure 4.5: Abundance of SF¢ (ppt) measured at Cape Grim, Tasmania
since 1978 (Maiss er al., 1996; Maiss and Brenninkmeijer, 1998).
Cape Grim values are about 3% lower than global averages.




4.GHG Mitigation under Climate Target
- Multigas and CO2 Sequestration

* Integrated climate indicators
Radiative forcing, temperature, etc.

* Simulation cases
Reference
No climate policy
2 deg
Global average surface atmospheric
temperature rise Is controlled.
(2 degC with relative to 2000) 12



Surface Aimoshenic Teperature Rse relative to 2000
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Gobal GHG Reduction Rat
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Carbon Balance (World,2deg)
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N20 Emissions by Sources (REF)
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F-Gases Emission (REF)
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F-Gases Emission (2deg)
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F-Gases Concentration
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Concentration vs. Emissions — Summary

* Short-lived GHGs
(CH4, HFC134a, etc.)
Mitigation efforts will affect
concentration in a short period.

* Long-lived GHGs
In spite of considerable reduction,
the concentration will keep almost
the same level In the long run.
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4.2 CO2 Sequestration (Engineering Sink)

# UNFCCC and IPCC concern on CO2
sequestration (policy and science)

* Policy
GHG inventories and national communications
GHG regqistry and Kyoto mechanism
* Science(IPCC)
Fourth assessment report
Sequestration special report
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IPCC WG3 TAR - CO2 mitigation potential
(Mitigation from different baselines)

Carbon Mitigation /7 550ppmv at 2100
- Median -

L

Fos. Fuel
Renewables
CO2 Scrub.

Reduction
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IPCC WG3 TAR (cont.) Scrub. & Removal
- Max. potential could be large.

CO2 Scrub. and Rmv. /7 550ppmv at 2100
- Median and Max Potential -

COMedian
B Max Potential




# CO2 sequestration options
Geologic - EOR, Aquifer,
Dep.Gas Well, ECBM
Ocean

# Uncertainty of sequestration cost
Cutdown by tech. progress?
Rising by high SMV cost?

(Safety, monitoring & verification)

28
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5.Discussion and Summary

(1) Co-benefit of CO2 mitigation

In energy sector Is not small.

— Lessening the dependency of fossil
resources Iin the energy system will
be helpful to the reduction of CH4
and N20.

— Including NonCO2 GHG abatement
measures In the energy sector would
relax climate impacts.

30



(2) Additional nonCO2-GHG abatement
efforts are required in the
agriculture sector.

- In the energy sector climate policy,
there are alternatives to satisfy demand
(some options are costly).

— On the contrary, In the agriculture
sector, we can hardly imagine substitutes
or conservations.

- Additional nonCO2-GHG abatement is
vital under the high transaction cost.

— Uncertainty in crop yield (fertilizer vs.
gene tech, etc. )

31



(3) Determinant factors of GHG
abatement technologies introduction

— Economics

pure cost

transaction cost

(especially If 1t Is distributed source)

- Technology

existence and on-site know-how
- Benefit of mitigation

Recognition and public outreach

Additional benefit by mitigation

energy recovery (Gas, Oil)

local environmental factors

32



(4) Uncertainty

— Technology

abatement options

availability, cost, etc.

- Nature

climate dynamics

— Socioeconomic

climate policy

GHG iIntensive human activities
- Others

33
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GRAPE team members hope that ..

(“-lobal "elationship “ssessment
to ‘'rotect the nvironment) will mature
to be

(VWorld 'nstrument to ' egotiate
for the " nvironmental Issues)
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Thank you for the kind attention.

Twin peaks of Mt. Tsukuba
© www.tsukuba.ac.jp
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