Climate Target

- Multigas and CO2 Sequestration -

Atsushi KUROSAWA

```
Research and Development Division, The Institute of Applied Energy (IAE)
Shinbashi SY bldg., 1-14-2 Nishishinbashi, Minato, Tokyo
105-0003 JAPAN
Phone (+81) 3-3508-8894 / Fax (+81) 3-3501-1735
/ E-mail: kurosawa@iae.or.jp / URL http://www.iae.or.jp
```

Workshop on GHG Stabilization Scenarios Tsukuba, Japan, January 22-23, 2004

The views are solely those of the individual author and do not represent organizational view of the IAE.

= Outline =

- 1. Introduction
- 2. Climate Stabilization Target and Possible Indicators
- 3. GRAPE Model
- 4. GHG Mitigation under Climate Target
 - 4.1 Multigas
 - 4.2 CO2 Sequestration (Eng. Sink)
- 5. Discussion and Summary

1. Introduction

- Warning from scientific communities
 - >>> Climate impact reduction by mitigation and adaptation
 - >>> UNFCCC and Kyoto Protocol

Flexibility of mitigation measures
Where and when
Kyoto GHGs / Multigas basket target
CO2,CH4,N2O,HFCs,PFCs,SF6
Sinks (LULUCF, engineering)

2.Climate Stabilization Target and Possible Indicators

Table 1. Indicators for attribution to climate change and their characteristics

Fig	gure 2	Close to impacts	Understandable	Certain	Backward discounting
Cumulative emissions	Α	-	••••	•••	-
Concentrations	В	•	••••	00(•••
Integrated concentrations	С	7	-	001	••
Radiative forcing (due to increased concentrations)	D	••	••	••	•••
Integrated past radiative forcing	Е	•••	-	••	••
Integrated future radiative forcing	F	0001	-	••	000
Temperature	G	0000	••••	•(••
Rate of temperature change	-	0000	00 ⁵	•	?
Sea level rise	-	0000	0000		

Source: FCCC/SBSTA/2002/INF.14

Figure 2. Indicators for attribution to climate change (adapted from ECOFYS)

3.GRAPE Model 5 Modules Long-term (-2100), 10 global regions

F-Gas Characteristics (IPCC WGI TAR)

	conc. (7	#1) emis.	(#2) life	GWP(100yr)	rad. eff.
	(ppt)	(Gg/yr)	(years)		(W/m2/ppb)
HFC23	14	~ 7Gg	260	12000	0.16
HFC134a	7.5	~ 25Gg	13.8	1300	0.15
CF4	80	~ 15Gg	>50000	5700	0.08
SF6	4.2	~ 6Gg	3200	22000	0.52
(#1)1998 , (#2)late	1990s			

Concentration vs. Emission

- Lifetime

Radiative forcing vs. Concentration

- Radiative Efficiency

Atmospheric conc. of HFCs and HCFCs (IPCC WG1 TAR)

Atmospheric conc. of CF4 (IPCC WG1 TAR)

Figure 4.4: Abundance of CF_4 (ppt) over the last 200 years as measured in tropospheric air (open diamonds), stratospheric air (small filled diamonds), and ice cores (open squares) (Harnisch *et al.*, 1996; 1999).

Atmospheric conc. of SF6 (IPCC WG1 TAR)

Figure 4.5: Abundance of SF₆ (ppt) measured at Cape Grim, Tasmania since 1978 (Maiss *et al.*, 1996; Maiss and Brenninkmeijer, 1998). Cape Grim values are about 3% lower than global averages.

- 4.GHG Mitigation under Climate Target
 Multigas and CO2 Sequestration
- * Integrated climate indicators Radiative forcing, temperature, etc.
- * Simulation cases
 Reference
 No climate policy
 2 deg
 Global average surface atmospheric
 temperature rise is controlled.
 (2 degC with relative to 2000)

Surface Atmospheric Teperature Rise relative to 2000

4.1 Multigas Mitigation Potential

Non-CO2 GHG Marginal Abatement Cost

Global GHG Reduction Rate

CO2 Emission and Concentration

CH4
Emission and
Concentration

Nat. Em. = 277(Tg)

N2O
Emission and
Concentration

Nat. Em. = 15.7(Tg)

F-Gases Emission (REF)

F-Gases Emission (2deg)

F-Gases Concentration

Concentration vs. Emissions - Summary

- * Short-lived GHGs
 (CH4, HFC134a, etc.)
 Mitigation efforts will affect
 concentration in a short period.
- * Long-lived GHGs
 In spite of considerable reduction,
 the concentration will keep almost
 the same level in the long run.

Radiative Forcing (ref)

Radiative Forcing (2deg)

4.2 CO2 Sequestration (Engineering Sink)

- # UNFCCC and IPCC concern on CO2 sequestration (policy and science)
 - * Policy
 GHG inventories and national communications
 GHG registry and Kyoto mechanism
 - * Science(IPCC)
 Fourth assessment report
 Sequestration special report

IPCC WG3 TAR - CO2 mitigation potential (Mitigation from different baselines)

IPCC WG3 TAR (cont.) Scrub. & Removal - Max. potential could be large.

CO2 Scrub. and Rmv. / 550ppmv at 2100 - Median and Max Potential -

CO2 sequestration options
Geologic - EOR, Aquifer,
Dep.Gas Well, ECBM
Ocean

Uncertainty of sequestration cost Cutdown by tech. progress?
Rising by high SMV cost?
(Safety, monitoring & verification)

Carbon Balance (World, 2deg)

5. Discussion and Summary

- (1) Co-benefit of CO2 mitigation in energy sector is not small.
 - Lessening the dependency of fossil resources in the energy system will be helpful to the reduction of CH4 and N2O.
 - Including NonCO2 GHG abatement measures in the energy sector would relax climate impacts.

- (2) Additional nonCO2-GHG abatement efforts are required in the agriculture sector.
 - In the energy sector climate policy, there are alternatives to satisfy demand (some options are costly).
 - On the contrary, in the agriculture sector, we can hardly imagine substitutes or conservations.
 - Additional nonCO2-GHG abatement is vital under the high transaction cost.
 - Uncertainty in crop yield (fertilizer vs. gene tech, etc.)

- (3) Determinant factors of GHG abatement technologies introduction
 - Economics

 pure cost

 transaction cost

 (especially if it is distributed source)
 - Technology existence and on-site know-how
 - Benefit of mitigation Recognition and public outreach Additional benefit by mitigation energy recovery (Gas, Oil) local environmental factors

(4) Uncertainty

- Technology

 abatement options
 availability, cost, etc.
- Nature climate dynamics
- Socioeconomic climate policy GHG intensive human activities
- Others

Acknowledgements

GRAPE team for useful discussions Prof. Yanagisawa (U. Tokyo) Dr. Yagita (AIST) Dr. Tokimatsu (RITE)

Data handling assistance System Research Center (SRC), Japan

GRAPE team members hope that ...

GRAPE (Global Relationship Assessment to Protect the Environment) will mature to be

WINE (World Instrument to Negotiate for the Environmental issues)

Thank you for the kind attention.

Twin peaks of Mt. Tsukuba © www.tsukuba.ac.jp