Alternative Paths Toward Stabilization Some Challenges for New Scenarios

Nebojša Nakićenović

International Institute for Applied Systems Analysis (IIASA) and Vienna University of Technology (VUT)

naki@iiasa.ac.at

Stabilization Scenarios "Stylized Facts"

- Path-dependence of stabilization vs baseline
- Baseline more important than stabilization
- Uncertainty probabilistic or distributions
- Stabilization reduces emissions uncertainties
- Consequences of lower economic growth
- Ancillary and avoided adaptation benefits
- Spatially explicit drivers, mitigation & impacts
 Nakicenovic #2
 IIASA&TUW 2004

Our dear friend and colleague is gone, leaving a void in our community and in our lives that can never be filled...

He will live forever in our hearts, in our thoughts and in our scientific work – and we'll continue to miss him every day!

Carbon Dioxide Emissions

Nakicenovic IPCC 2001

40 SRES Scenarios and Literature Range

Nakicenovic et al.

SRES 2000

Carbon Emissions: Scenarios and Stabilization Profiles

Carbon Emissions: Scenarios and Stabilization Profiles

Emissions Mitigation Technologies

Source: K. Riahi

ENERGY SYSTEMS COSTS OF ALTERNATIVE BASELINES AND STABILIZATION SCENARIOS

40 SRES Scenarios and Literature Range

Nakicenovic et al.

SRES 2000

Energy-Related Carbon Dioxide Emissions

MAJOR CLIMATE CHANGE UNCERTAINTIES

Cumulative CO₂ of IPCC SRES scenarios and resulting CO₂ concentrations and climate sensitivity in °C temperature change based on MAGICC model

Grübler

IIASA 2002

Distribution of Cumulative Carbon Emissions Across the Range of SRES Scenarios

Distribution of Cumulative Carbon Emissions Across the Range of Post – SRES Scenarios

Fischer et al., IIASA, 2001

Fischer et al., IIASA, 2001

1900, actual data

North-East of the USA

1990, actual data

1990, proportional scaling (CIESIN)

1900, actual data

North-East of the USA

2000, actual data

2000, proportional scaling (CIESIN)

Per Capita Income Across SRES Scenarios

Per Capita Income Across SRES Scenarios

Carbon Emissions: Scenarios and Stabilization Profiles

Potential Hydrogen Market by 2020 34 IIASA-WEC and IIASA-IPCC Scenarios

DYNAMICS OF TECHNOLOGY

Deep Uncertainty:

Limited knowledge on feasibility and costs of future technologies

Technological Learning:

Improvements are a function of accumulated experience (learning curve)

Japan - PV Costs vs. Expenditures

Grübler #38 IIASA 2002

Fuel Cell Marketing Strategy Successive Market Niches via Cost Reductions

Source: P. B. Bos, *Commercializing Fuel Cells – Managing Risks*, Fourth Grove Fuel Cell Symposium, Commonwealth Institute London, September 19-22, 1995

Nakicenovic #39

Technological Uncertainties Learning rates (push) and market growth (pull)

Learning Potentials Number of Units Sold to Date

Automobiles	>1	10 ⁹	∆=x100,000
Electric cars	<1	10 ⁴	Fuel Cells
Intel chips	>1	10 ⁸	Factor 1,000
PV cells	<1	10 ⁵	Difference!
Gas turbines	<1	10 ⁶	Factor 100
Wind turbines	>1	10 ⁴	Difference!
Nuclear reactors	<1	10 ³	Negative Learning Possibility

Why Are Increasing Returns, Uncertainty and Risk Important?

- Very long-term processes
- Substantial effect on economic development
- Path dependency and technological "lock in"
- Highly uncertain characteristics and economic performance of future technologies
- Potentially high impact on global, regional and local environment

Stabilization Scenarios "Stylized Facts"

- Path-dependence of stabilization vs baseline
- Baseline more important than stabilization
- Uncertainty probabilistic or distributions
- Stabilization reduces emissions uncertainties
- Consequences of lower economic growth
- Ancillary and avoided adaptation benefits
- Spatially explicit drivers, mitigation & impacts
 Nakicenovic #43

 IIASA&TUW 2004

Next Steps on Urgent Issues

- Limitations of downscaling need to be considered (need for scaling methods; other to proportional)
- Emissions modeling community could be asked to include all GHGs and particulates in multigases baseline scenarios
- Role of additional GHGs and particulates to be considered in stabilization scenarios (e.g. burdensharing; uncertainties)

http://www.iiasa.ac.at/Research/TNT/index.html

naki@ iiasa.ac.at

Nakicenovic IIASA 2003