Climate Modeling for Global Warming Projection at the MRI Akira Noda and MRI-CGCM modeling group Meteorological Research Institute

- Transient runs with MRI-CGCMs
- Downscaling with MRI regional climate models
- Earth system modeling for the carbon cycle and chemical mass transport

•	Feature	MRI-CGCM1	MRI-CGCM2				
	<u>Atmospheric component</u>						
•	Horizontal resolution	5° (long.) x 4° (lat.)	T42 (~2.8 ° x 2.8 °)				
•	Layers (top)	15 (1 hPa)	30 (0.4 hPa)				
•	Solar radiation	Lacis and Hansen (1974)	Shibata and Uchiyama (1992)				
•	(SW)	$H_{2}O, O_{3}$	H ₂ O, O ₃ , CO ₂ , O ₂ aerosol				
•	Long wave radiation	Shibata and Aoki (1989)	Shibata and Aoki (1989)				
•	(LW)	H_2O, CO_2, O_3	$H_2O, CO_2, O_3, CH_4, N_2O$				
•	Convection	Arakawa and Schubert (1974)	Prognostic Arakawa-Schubert				
•			Randall and Pan (1993)				
•	Planetary Boundary	Bulk layer (Tokioka et al., 1988)	Mellor and Yamada (1974)				
•	Layer (PBL)						
•	Gravity wave drag	Palmer et al. (1986)	Iwasaki et al. (1989)				
•		Rayleigh friction	Rayleigh friction				
•	Cloud type	Penetrative convection,	Penetrative convection				
•		Middle-level convection,					
•		Large-scale condensation,	Large-scale condensation				
•		stratus in PBL					
•	Cloudiness	Saturation	Function of relative humidity				
•	Cloud overlap	Random for nonconsecutive clouds,	Random + correlation				
•		0.3 for convective clouds					
•	Cloud water content	Function of pressure and	Function of temperature				
•		temperature					
•	Land process	4-layer diffusion model	3-layer simple biosphere (SiB)				

•	Feature	MRI-CGCM1	MRI-CGCM2					
	<u>Oceanic component</u>							
•	Horizontal resolution 2.5 ° (long) x 2 ° to 0.5 ° (lat)							
•	Layers (min. thicknes	ss) 21 (5.2 m)	23 (5.2 m)					
•	Eddy viscosity	H. visc. 2.0 x 10 ⁵ m ² s ⁻¹	H. visc. 1.6 x 10 ⁵ m ² s ⁻¹					
•		V. visc. 1 x 10 ⁻⁴ m ² s ⁻¹	V. visc. 1 x 10 ⁻⁴ m ² s ⁻¹					
•	Eddy mixing	Horizontal-vertical mixing	Isopycnal mixing					
•			+ Gent and McWilliams (1990)					
•		H. diff. 5.0 x 10 ³ m ² s ⁻¹	Isopycnal 2.0 x 10 ³ m ² s ⁻¹					
•		V. diff. 5.0 x 10 ⁻⁵ m ² s ⁻¹	Diapycnal 1.0 x 10 ⁻⁵ m ² s ⁻¹					
•	Vertical viscosity and Mellor and Yamada (1974, 1982)							
•	diffusivity							
•								
•	Sea ice	Mellor and Kantha (1989)						
•								
	<u>Atmosphere-ocean coupling</u>							
•	Coupling interval	6 hours	24 hours					
•	Flux adjustment	Heat, salinity	Heat, salinity + wind stress (in the equatorial band 12 ° S to 12 ° N)					

.

IPCC SRES and Stabilization Scenarios

MRI-CGCM2.3

Surface Air Temp. Change

(2071 - 2100) - (1961 - 1990)

Spatial patterns of Global Warming and Natural Variability MRI-CGCM

Spatial patterns of Global Warming and Natural Variability Had-CGCM

Due to El Nino

Due to CO2 increase

Spatial patterns of Global Warming and Natural Variability GFDL-CGCM

Due to El Nino

Due to CO2 increase

Mechanism of ENSO 🔅 ENSO-like Change

Mechanism of AO-like Change

z500(cntl) DTs(91-110)

12

10

8

6

4

2

stronger snow/albedo feedback near the troughs

Noda et al. (1996)

Manabe and Wetherald (1975)

Possible global warming patterns suggested by CGCMs

Observed trend

(a) Observed SLP Trend 1948-97 Win

Comparison between Simulated AO-like and ENSO-like Changes

	El Niño	El Niño SO ?	El Niño SO: La Niña	La Niña
AO		CCSR/NIES HadCM3	ECHAM3/LSG ECHAM4/OPYC3 GFDL15	MRI1
Non- AO	CCCma CSIRO GFDL/R30 HadCM2 IPSL MRI2 NCAR			

Terrestrial Biosphere Model follows Goudriaan and Ketner (1984). NPP (Miami model: Lieth (1975), Friedlingstein et al. (1992)).

Ocean model by Obata (2001) and Obata and Kitamura (2003)

気象研海洋炭素循環モデルによる海洋大気間二酸化炭素交換の経年変動(1961-1998)

Ocean Carbon Cycle Model by Meteorological Research Institute

Climate change experiment 1961-1998 (driven by NCEP wind and JMA SST)

Figure: Sea-to-Air CO₂ flux (in GtC/year)

dashed line: global (variability (1std) = 0.23 GtC/yr) solid thick line: each region

Equatorial eastern Pacific (0.13 GtC/yr) is dominant by the ENSO (during El Niño, weak easterly, weak upwelling, reduced carbon supply from deeper waters and reduced sea-air CO₂ flux).

Obata and Kitamura,

Interannual variability of the sea-air exchange of CO_2 from 1961 to 1998 . J. Geophys. Res., 108 (C11), 2003.

Global warming experiment using Fossil Fuel CO₂ Emission (IS92a scenario 1999-2100) Emission: CDIAC(1850-1998), IS92a(1999-2100). (N2O, CH4, Halocarbon, tropos. Ozone: IS92a concentration)

Annual mean SST

Dynamical sea level height (cm)

Earth Simulator

20kmメッシュ全球気候モデルによる 現在気候の再現

1時間降水量(mm)

2002-07-15 122

Simulations of Tropical Cyclones With AGCM of T106

Sugi, Noda and Sato (JMSJ, 2002)

More results are coming soon.

Acknowledgment Computational resources are supplied by MRI, CGER/NIES and Earth Simulator.