Climate impacts: ongoing work with IMAGE 2.2 Tom Kram *et al.*

Workshop on GHG Stabilization Scenarios, NIES, Tsukuba, 22-23 January 2004

IMAGE

- Integrated Model to Assess the Global Environment
 - Combine different themes, investigate interrelations and feedbacks (human and natural), give "complete" picture
- For specific tasks: scanner models, based on IMAGE
 - FAIR: cost analyses and exploration of different burden sharing regimes
- For impacts: IMAGE in conjunction with dedicated modules and separate models

- WaterGAP, Euromove, Nutrient-model, etc.

Structure of IMAGE 2.2

The land-use system

- Rule-based allocation mechanism combining physical and human factors
- Output: Land use change geographically explicit

Information used in land use model

- Population density
- FAO data for arable area in each country
- FAO data for land productivity
- Potential productivity maps for each crop

2 0.20 0.40 0.80 0.00 0.60 1.00

Agricultural land requirements

- Regional demand for animal products (beef, milk, pork, mutton, eggs and poultry) and crops (cereals, maize, rice, pulses, oil crops and roots & tubers)
- Trade flows between regions (agro-economic models)
- Yield increase due to technological development
- Shifts in livestock production systems

Historical trends in land-use

Mondiaal landgebruik mln km² 40-Grasland/weiden Gematigd bos Toendra/woestijn/overig 30-Tropisch bos Landbouwgewassen Natuurlijke graslanden/ 20savanne Struikachtige vegetatie 10-0-Т Τ 1700 1750 1800 1850 1900 1950 2000 Grafieknummer: 1177d03g Datum: 18-nov-2003 Concept

Results for FAO scenario (Agriculture towards 2030)

Land Cover - 2030 - B2_FAO2

Agricultural land Temp. mixed forest Scrubland Ice Tundra Temp. decid. forest Extensive grassland Savanna Wooded tundra Warm mixed forest C plantations (not used) Tropical woodland Regrowth forest (Abandoning) Boreal forest Grassland/ steppe Tropical forest Regrowth forest (Timber) Cool conifer Hot desert

Model results

- Nutrient input due to change in arable land and fertilizer use
- Productivity per hectare due to climate change (temperature, precipitation and CO₂)
- Land-use emissions from deforestation, fertilizer use and cattle (diet and size)

Integrated Assessment: tackling the interrelations between environmental issues

- Increased pressure on the land use system affects ecosystems and LU emissions
- Compounded effects from simultaneous (multiple) environmental stress on ecosystems

Natural Capital Index

Verandering natuurlijkgebied en milieudruk 2002 - 2032

Regionale Markt

Ter -

Mondiale Samenwerking

Regionale Samenwerking

Legenda

Van gedomesticeerd naar natuurlijk gebied

Afname milieudruk

Geen verandering

Toename milieudruk

Forse toename milieudruk

Van natuurlijk naar gedomesticeerd gebied

Blijft gedomesticeerd gebied

Water

Source: Eickhout et al., 2004 (in prep.

Integrated Assessment: Nitrogen

Nitrogen cycle issues: nutrients and emissions

Nitrogen loading of coastal water

Nutrient consequences of FAO scenario: global N-fluxes

Integrated Assessment: Water

- Consequences for water availability (co-operation with University of Kassel - WaterGAP model)
- Growing demand and (regional) water stress
- Water induced soil degradation

Change in precipitation surplus between 2000 and 2030

Not only change in supply...

• The growth of water demand by households and industries (% aagr 2000-2040)

	Strong	Transatlantic	Regional	Global	
	Europe	Market	Communities	Economy	
EU-15	-1.6	0.3	-1.0	-1.2	
OECD	-1.3	0.5	-0.5	-1.1	
non Annex I	0.7	2.6	1.4	2.0	
World	-0.3	1.6	0.5	0.6	

High risk of water-induced soil degradation

Integrated Assessment:

Linking climate and air quality: IMAGE + RAINS

Air quality gains from climate policy

TIMER-RAINS/Asia

Integrated Assessment: Biodiversity

- Biodiversity impacts from LU change, climate and other environmental factors
- loss of vegetation by type (IMAGE)
- loss of species (IMAGE + species-area curves)
- climate effect on European ecosystems (IMAGE + EUROMOVE)

Consequences for natural vegetation

Decrease of vegetation types

Millennium Ecosystem Assessment: species - area curves

$S = C \times A^z$ (irreversible)

MA: loss of species by stress factor

Biodiversity: EUROMOVE/IMAGE

(Note: RIVM contribution to Nature article)

- EUROMOVE estimates presence of 1400 vascular plant species in gridcells from 6 climate variables
- Calibration with Atlas Flora Europaeae (1989)
- Aggregated to 20 European regions
- Climate variables from IMAGE + GCM patterns
- Baseline (CPI) and stab.scenarios (S550, S450)
- Sensitivity to different GCM patterns

Biodiversity indicators from EUROMOVE

1. Stable area:

percentage of grid cells in which a species occurs both in 1995 and in the future

2. Disappearance fraction:

fraction of species present today in region, that are no longer there in the future

3. Species flux:

difference between the number of appearing and disappearing species as fraction of the number of species in 1995

Stable Area in Europe

Species disappearing (CPI-2100)

Lowest: Norway&SwedenHighest: Germany, Ukraine, Greece

Sensitivity of stable area in 2100 to GCMs

СРІ	HADCM2	CGCM1	CSIRO-MK2	ECHAM4
Lowest	39%	55%	61%	44%
	Ukraine	Spain	Russia	Spain
Average	64%	72%	72%	65%
Highest	89%	94%	87%	89%
_	Baltics	Iceland	Benelux	Iceland
S550				
Lowest	55%	65%	70%	55%
	Ukraine	Spain	Russia	Spain
Average	73%	79%	79%	74%
Highest	93%	95%	92%	92%
_	Baltics	Iceland	Benelux	Iceland
S450				
Lowest	62%	70%	74%	74%
	Ukraine	Spain	Spain	Spain
Average	78%	82%	82%	78%
Highest	94%	95%	93%	93%
	Baltics	Iceland	Benelux	Benelux

For more information

www.rivm.nl/ieweb or www.rivm.nl/image