APEIS Training Workshop

Initial output of AIM/CGE China Case

Zhu Songli Yu Shengmin

Energy Research Institute, China Dec. 3, 2004, NIES, Tsukuba

Contents

- **K** Introduction of I-O table of China
- **K** Data preparation of AIM/CGE-China
 - Aggregation and dis-aggregation of sectors and commodities
 - **FCF** data, energy data, emission data
- Initial output of AIM/CGE-China:
 - **Reference** scenario
 - **Policy** options
- **Future tasks**

I-O table of China

Published every 5 years;

First I-O table was developed for 1992;

Now 1997 I-O table is used for most cases

2002 I-O table would be available soon.

Each sector is corresponding with one product

Sector and commodity classification

% 3 kinds of I-O table are available

	sector	sectors		
Industry		6 sectors	40 sectors	124 sectors
Primary	Agriculture	1	1	5
Secondary	Industries	1	25	84
	Construction	1	1	1
	Transport	1	2	9
Tertiary	Commercial	1	2	2
	Other	1	9	23
Availability	U-matrix	No	Yes	No
	V-matrix	No	Yes	No

Final Consumption and value added

Final Consumption

Household (rural, urban), government, fixed capital formation, stock change, export, import

Xalue added

Capital income, labor income, net production tax and operating surplus

Reconstruction of I-O table

>> Dis-aggregate: energy production sectors

>> Dis-aggregate: energy intensive sectors

Aggregate: sectors in which data is doubtable

Aggregate: sectors less important for our study

purpose

Aggregation and dis-aggregation should be studyspecific

Example of dis-aggregation

Original I-O table	AIM/CGE-CHINA		
Crude Oil and gas	Oil production		
production	Gas production		
Petroleum processing and	Petroleum processing		
coking	coking		
Electricity and heat	Electricity generation		
production	Heat production		
Metal smelting and	Steel production		
pressing	Non-ferrous metal production		

Sector comparison

industry		original	revised
Primary	Agriculture	1	1
Secondary	Industries	25	22
	Construction	1	1
	Freight	2	1
Tertiary	Transport		
	Commercial	2	2
	Other	9	2
Total		40	29

seven energy goods: coal, oil, gas, petroleum products as a whole, electricity, coke, town gas

Sector and commodity classification

Symbol	Description	Symbol	Description
AGR	Agriculture	МЕТ	Metal production
M_C	Coal mining	ОНІ	Production of machinery equipment
M_O	Crude oil production	REP	Maintenance of machinery equipment
M_G	Gas production	OLI	Other manufacturing
MIN	Metal and non-metal mining	ELE	Electricity generation
FOD	Food and tobacco production	HET	Heat production
ТЕХ	Textile	GAS	Gas production and supply
WOD	Wood and wood products	WTR	Water supply
ΡΑΡ	Paper and paper products	CNS	Construction
OIL	Oil processing	T_F	Freight transport and warehousing
COL	Coking	СОМ	Commercial activity
СНМ	Chemical industry	RES	Food and drinking
NMM	Non-metal mineral production	T_P	Passenger transport
STL	Steel production	OSR	Other services
NFR	Non-ferrous metal production	I. I. I.	<u>, , , , , , , , , , , , , , , , , , , </u>

FCF data

	sector		Sector	1	Total demand
Commodity		Α	В	С	of FCF
con	а	I _A *I _a /INV	I _B *I _a /INV	I _C *I _a /INV	la
nmodity	b	I _A *I _b /INV	I _B *I _b /INV	I _C *I _b /INV	l _b
	С	I _A *I _c /INV	I _B *I _c /INV	I _C *I _c /INV	I _c
Total invest	tment	IA	I _B	Ic	INV

FCF data by investment goods is provided by I-O table.

- FCF data by sector is provided by China Statistic Yearbook on Fixed Capital Investment
- FCF by goods and by sector is calculated in proportion to the FCF data by goods

Energy and emission data

Energy consumption by type is provided by China Energy Statistic Yearbook;

- CO2 emission data is from Initial National Communication of China (INC);
- **Price data is from AIM/LOCAL-China**

Share of energy used as feedstock is prepared by Dr.Yang. More accurate data could be provided by INC soon.

Modification of model for China

Static model

- > Add SO₂ emission;
- **X** Add taxes: direct and indirect tax

>> Dynamic model

- **Fix export of energy goods**
 - Add SO₂ emission

Scenario for simulation

- **Planning horizon: 1997-2020**
- **Energy efficiency in initial year: 0.80**
- **Energy efficiency improvement in each year: 1%**
- **K** Labor efficiency in initial year: 0.5
- Kabor efficiency improvement in each year: 5%
- K GDP growth rate: conservative national plan
- < Labor growth rate: UN data
- International price: 1
- Operation rate: 1
- K Cost of mining: from Dr.Fujino

Result on reference scenario-GDP

Result on reference scenario - component of GDP

Result on reference scenario- energy & CO₂

Result on reference scenario - SO₂

1 1950

Proposed policy options

 \times Total amount constrain on SO₂ emission

- SO₂ emission in 2005 should be 10% lower than that in 2000;
- >10% lower in 2010 compared with 2005;
- \approx 25% lower in 2020 compared with 2010;
- Content of the second secon
 - By 2020, 75% of coal-fired power plants should install desulfurating devices

Scenario Creation

Scenario 1

 \geq keep SO₂ emission stable;

Solution Number Numb

Scenario 2

Annual SO₂ reduction rate: 2%;

Desulfurization rate: 70% in 2020;

Hypothesis about selected policy option

- **SO2 would be charged.**
- **CO2 emission would also drop**
- Energy mix would have to be optimized, less coal, more oil and gas;
- **Solution** GDP growth would be negatively influenced.
- Output of coal-dominant sectors and commodities would be heavily influenced.

SO2 price

GDP loss

A A A A A A

CO2 emission

Energy mix

Share of output value of "ELE"

		"ELE"	"ELE"(co
		(SECTOR)	mmodity)
1997	Base year	1.84	1.89
2010	BAU	1.5	1.55
	S1	0.52	0.57
	S2	0.06	0.12
2020	BAU	1.35	1.38
	S1	0.11	0.16
- 69 ·	S2	0.17	0.23

Why energy mix does not change much

From 2002, all oil is imported; from 2010, all gas is imported.

Finding

SO2 emission reduction seems an impossible task under the current assumption;

Future tasks

- **Prepare more accurate country-specific data**
- **Modify model to get more reasonable output**
- **K** Giving more concern on local pollutant emission
- Some more policy option: Introduction of fuel tax (oil tax)

thank you!