

Channel to Discovery

AIM/Energy Snapshot Tool (ESS)

AIM Training Workshop Tokyo, Japan Oct 16-20, 2006

MIZHO

Mizuho Information & Research Institute

Tomoki Ehara

Contents

Contents

В	ack Ground		
S	Structures & Flows		
С	peration		
	Demand Setting 1		
	Exercise 1		
	Demand Setting 2		
	Exercise 2		
	Transformation Sec		
	Exercise 3		
	Analysis		
	Exercise 4		

- Background
- Structures & Flows
- Operation
 - Demand Settings (Residential Sector)
 - Demand Settings (Other Sector)
 - Transformation Sector (Electricity, Other)
 - Analysis

	Tomol	ki E	Eha	ra
--	-------	------	-----	----

Deeleenend	Declement
Background	Background
IM Training Workshop IES, Ibaraki, Japan, Oct 16-20, 2006	

Contents

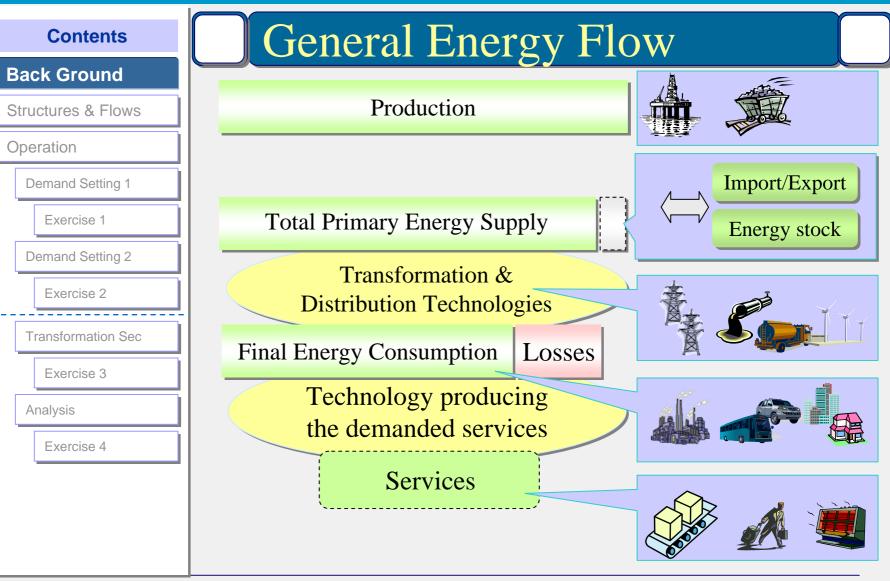
Back Ground
Structures & Flows
Operation
Demand Setting 1
Exercise 1
Demand Setting 2
Exercise 2
Transformation Sec
Exercise 3
Analysis
Exercise 4

Background of development

- In LCS/SD scenario developing processes, a tool with following feature would be useful
 - Clear assumptions & calculation processes
 - Easy interpretation of the results
 - Easy sensitivity analysis (assumptions can be changed manually)
 - Quick calculation
 - Overview of general energy flow (keep balance)

 Tools for describe future (ex. 2050) Energy Balance Table (EBT) in a spreadsheet: Energy Snapshot Tool (ESS)

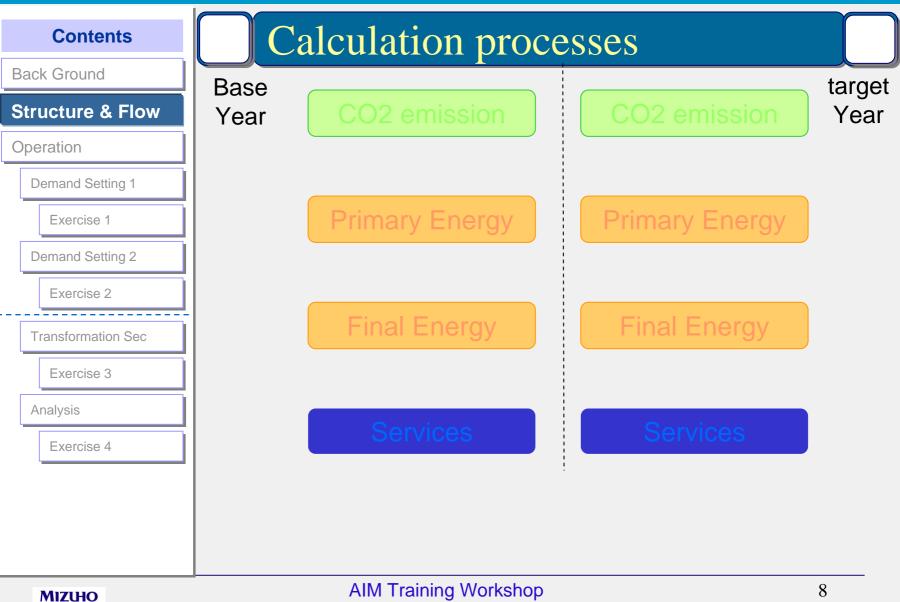
Contents

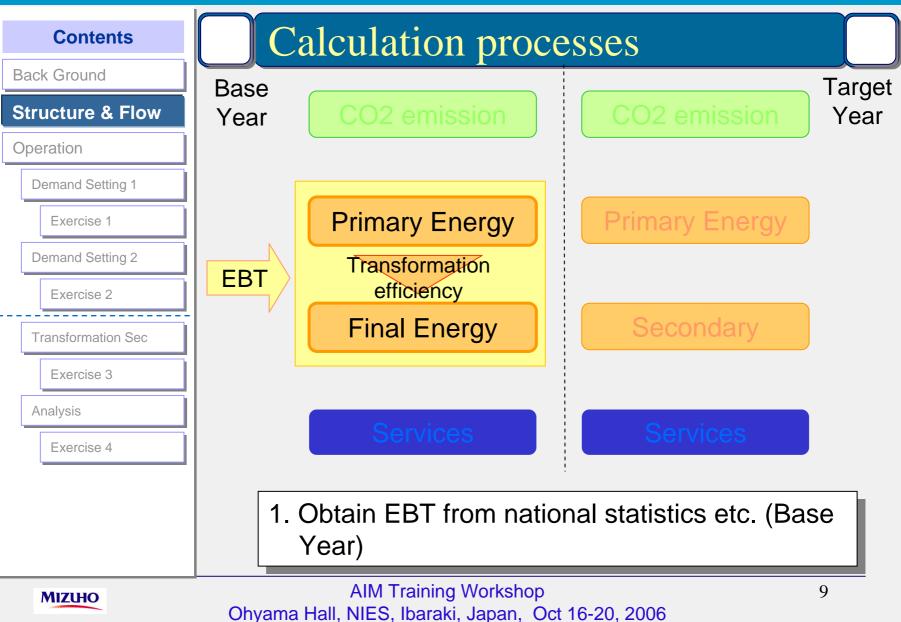

Back Ground

S	Structures & Flows		
С	peration		
	Demand Setting 1		
	Exercise 1		
	Demand Setting 2		
	Exercise 2		
	Transformation Sec		
	Exercise 3		
	Analysis		
	Exercise 4		

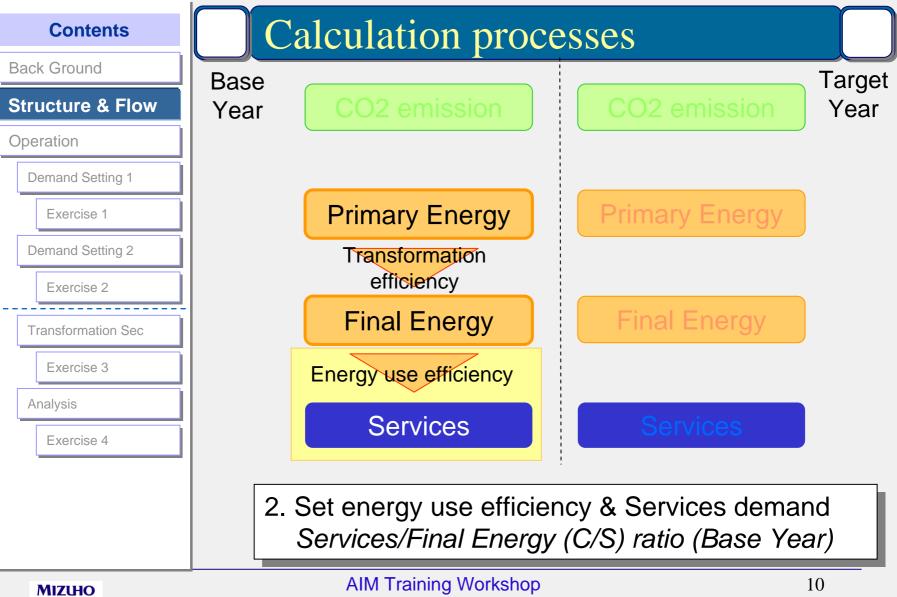
- Excel format
- Based on EBT
- Step by step approach
- The tool can be used for;
 - Developing and designing preliminary LCS/SD scenarios
 - "What if" analysis
 - Check the consistency among the sectors
 - Analyze the impacts of countermeasures package
 - Communication among stakeholders

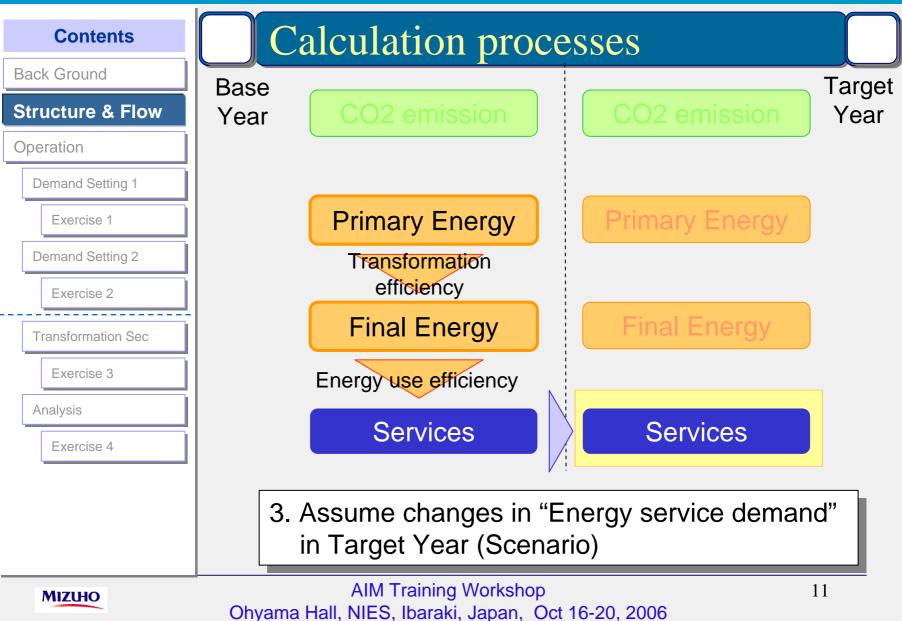
Tomoki Eha<u>ra</u>

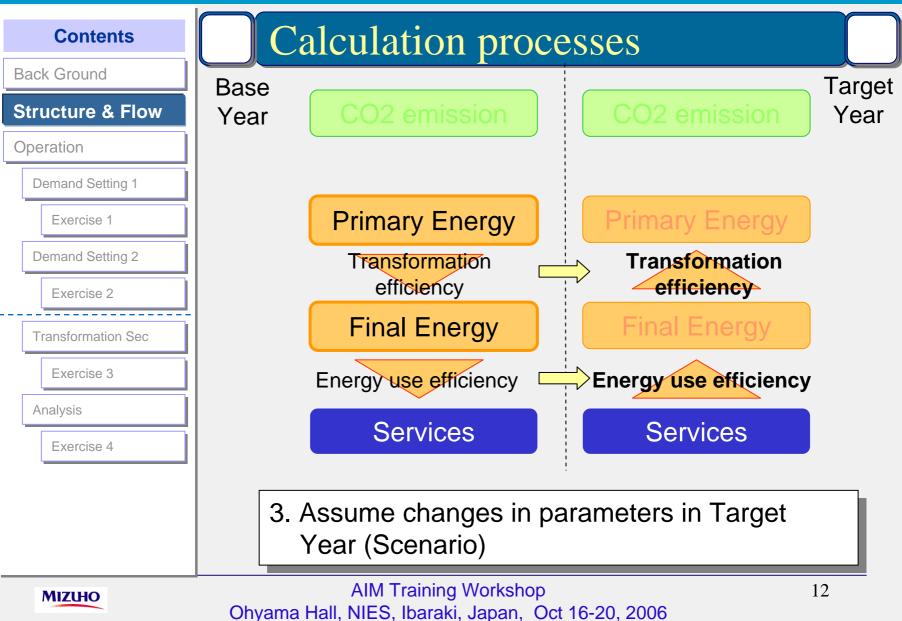


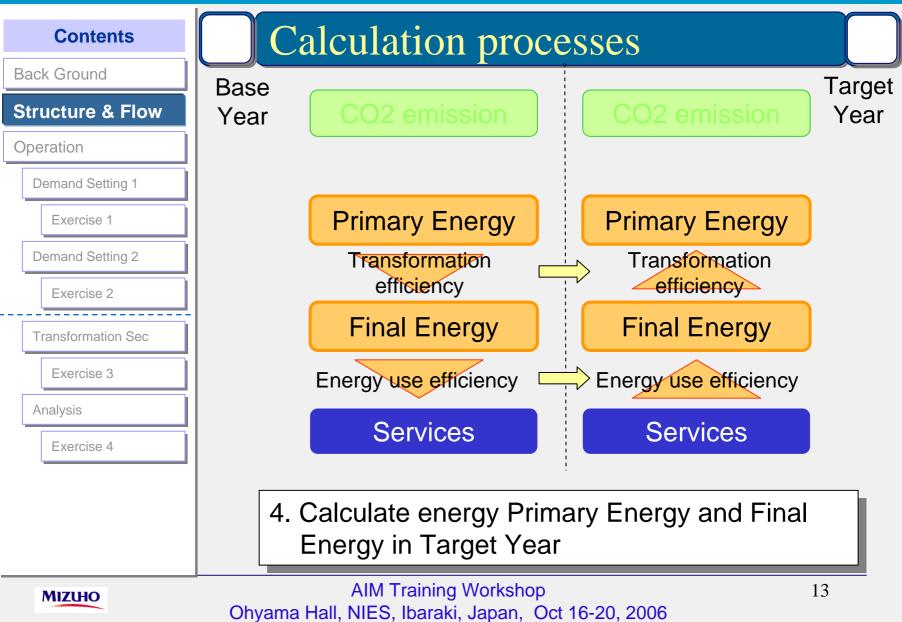

Тотої	ki	F	hai	ra
10m0	\mathcal{V}		iui	u

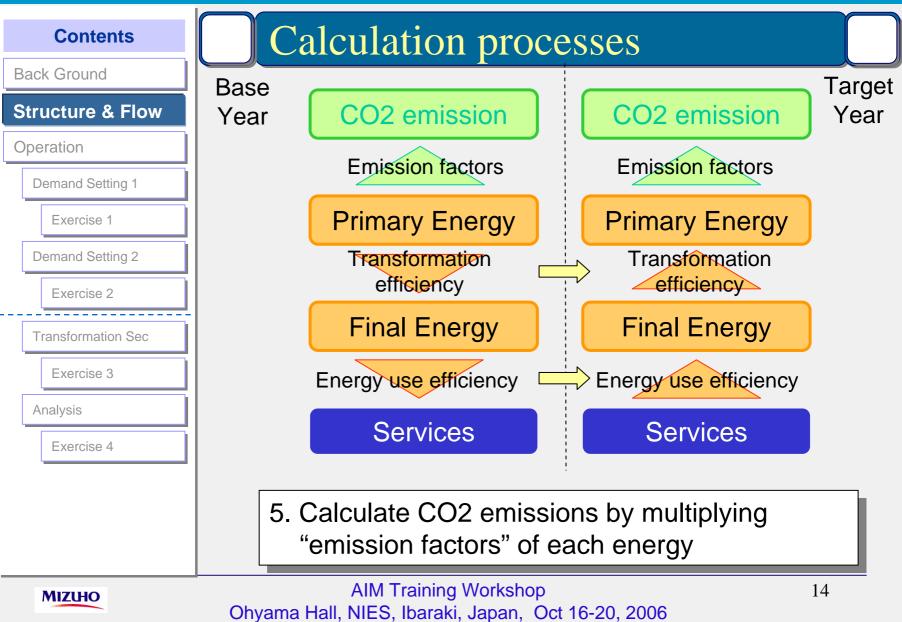
\mathbf{C} to the second of \mathbf{C} is the second secon	
Structure & Flow	Structure & Flow
M Training Workshop ES, Ibaraki, Japan, Oct 16-20, 2006	


Tomoki Ehara

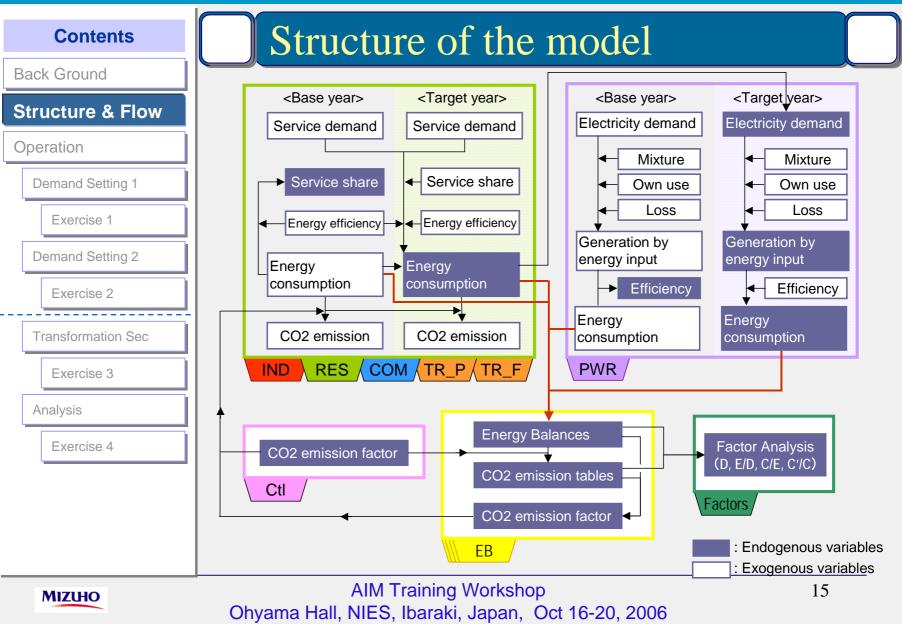

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

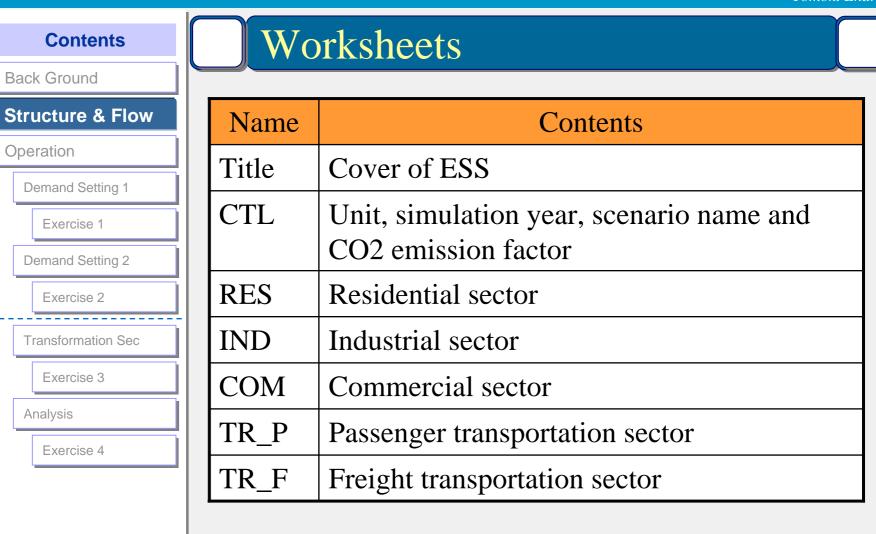



Tomoki Ehara

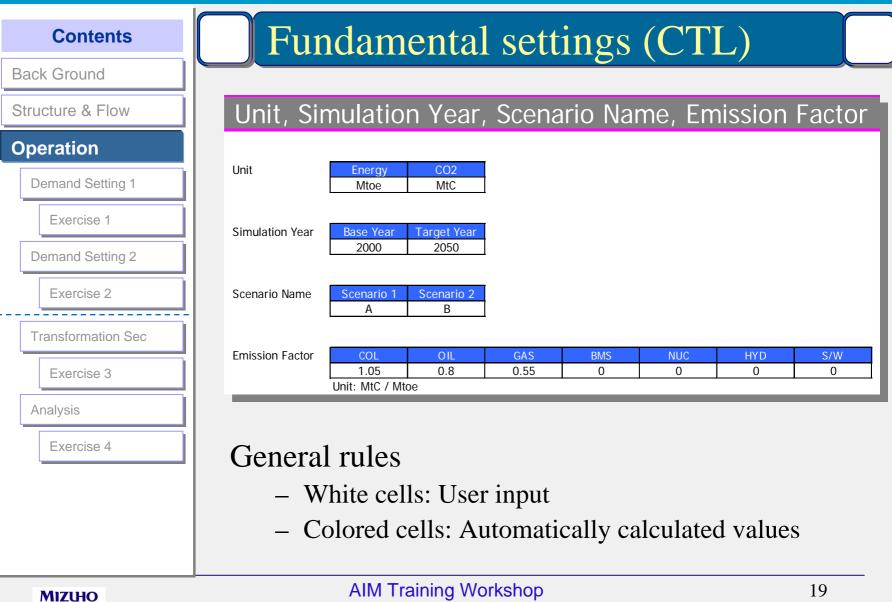


Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

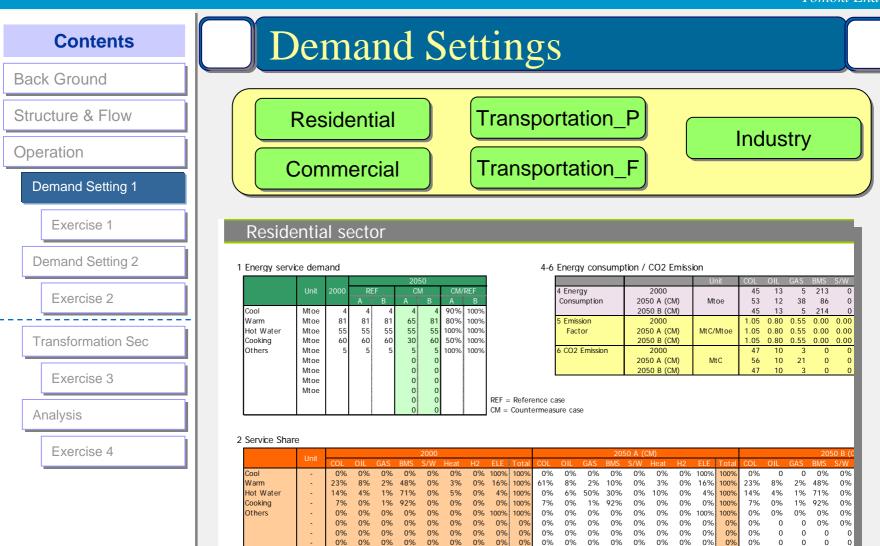




Tomoki Eha<u>ra</u>


Contents	Worksheets		
Back Ground			
Structure & Flow	Name	Contents	
Operation Demand Setting 1	EB_SD	Energy balance table (Service & Demand side countermeasures)	
Exercise 1 Demand Setting 2	EB_S	Energy balance table (Service side countermeasures)	
Exercise 2 Transformation Sec	EB_D	Energy balance table (Demand side countermeasures)	
Exercise 3 Analysis	EB_0	Energy balance table (No counter measures = Reference case)	
Exercise 4	Factors	Factors analysis of CO ₂ reduction	
	EneEms	Graphs of energy cons. and CO ₂ emissions	

Tomol	ki .	Eŀ	iar	а


Contents
Ground
ture & Flow
ation and Setting 1 xercise 1 and Setting 2 xercise 2
0

Tomoki Ehara

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Tomoki Ehara

AIM Training Workshop Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

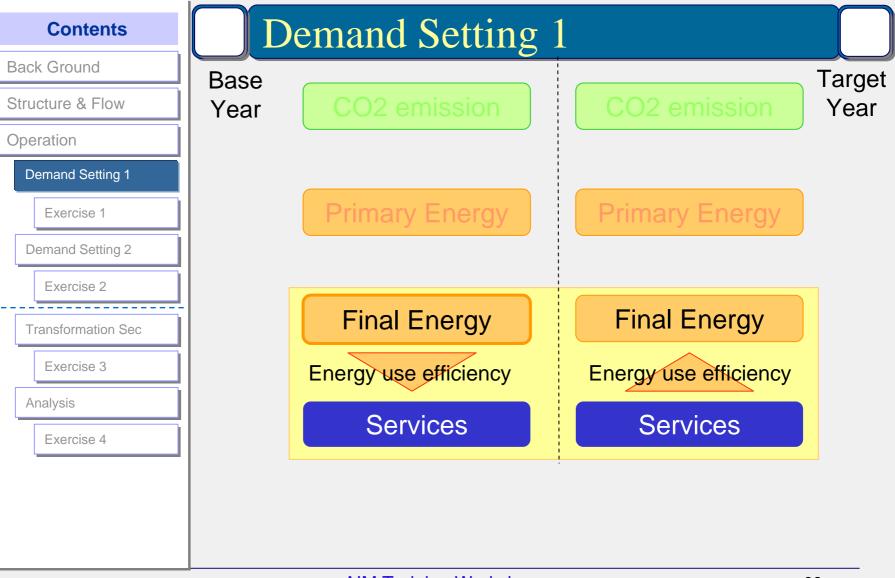
0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

0% 0% 0% 0% 0% 0% 0%

0 0 0 0

0 0 0 0

0 0 0 0


MIZHO

.

Contents		
Back Ground		
Structure & Flow		
Operation		
Demand Setting 1		
Exercise 1		
Demand Setting 2	Demand Setting 1	
Exercise 2		
Transformation Sec	(Residential Sector)	
Exercise 3		
Analysis		
Exercise 4		
ΜΙΖΙΗΟ	AIM Training Workshop	21

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Tomoki Ehara

MIZUHO

Contents

Back Ground
Structure & Flow
Operation
Demand Setting 1
Exercise 1
Demand Setting 2
Exercise 2
Transformation Sec
Exercise 3
Analysis
Exercise 4

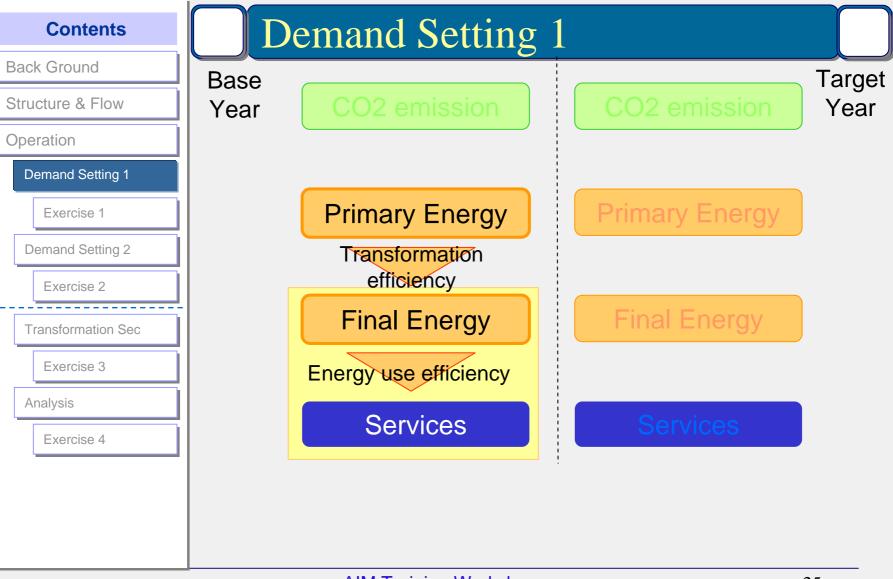
0. Classification of service demand

- Set classification of energy service demand & its unit in residential sector
- Scenario name, base year and target year set in CTL sheet will shown in each table

		2050					D		
	Unit	2000	R	REF		CM		CM/REF	
			Α	В	Α	В	А	В	
Cool	Mtoe	12	12	12	12	12	100%	100%	
Warm	Mtoe	72	72	72	72	72	100%	100%	
Hot Water	Mtoe	34	34	34	34	34	100%	100%	
Cooking	Mtoe	2	2	2	2	2	100%	100%	
Others	Mtoe	11	11	11	11	11	100%	100%	
					0	0			
					0	0			
					0	0			
					0	0			
					0	0			
					0	0			

Contents

Back Ground
Structure & Flow
Operation
Demand Setting 1
Exercise 1
Demand Setting 2
Exercise 2
Transformation Sec
Exercise 3
Analysis
Exercise 4


1. Energy Cons. in base year

- Past record of energy use in residential sector
- If the appropriate data is not available, use data of EBT (one sector), or make a guess!!

						2000				
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	2.0	2.0
Warm	Mtoe	30.0	10.0	3.0	50.0	0.0	3.0	0.0	5.0	101.0
Hot Water	Mtoe	10.0	3.0	1.0	50.0	0.0	3.0	0.0	2.0	69.0
Cooking	Mtoe	5.0	0.0	1.0	113.0	0.0	0.0	0.0	0.0	119.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	45	13	5	213	0	6	0	14	29.6
		rainin		KSHG	0					

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Contents

Structure	&	Flow
-----------	---	------

Operation

Demand Setting 1

Exercise 1

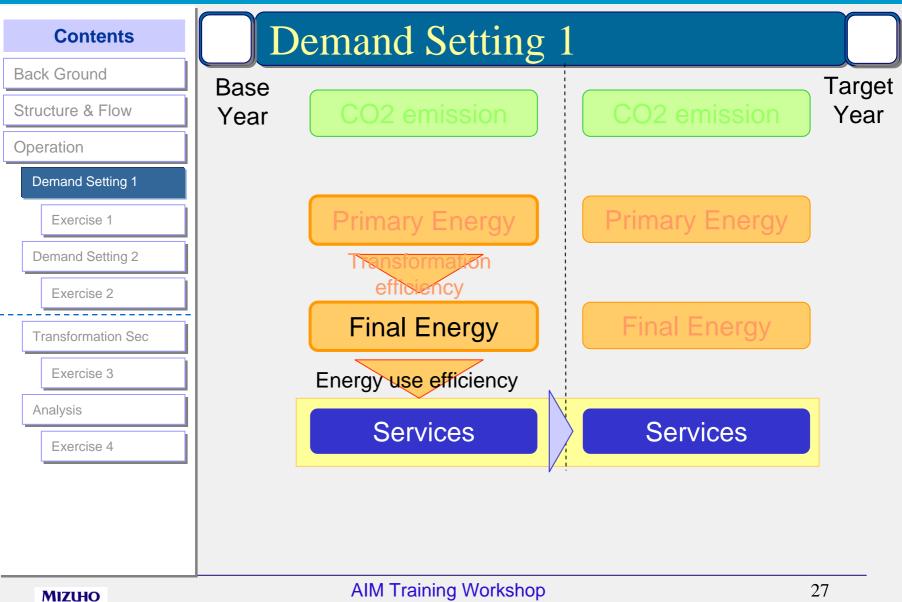
Exerc

Transfor

Exerc

Analysis

Exerc


2. Energy use eff. in base year

- Set energy efficiency of each energy use
 - Energy use efficiency: Ratio between the consumption of energy to service demand
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

cise 2		Unit	2000								
		UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
rmation Sec	Cool	toe/toe								2.00	-
	Warm	toe/toe	0.70	0.70	0.70	0.90		1.00		3.00	-
cise 3	Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
	Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
S	Others	toe/toe								1.00	-
cise 4		toe/toe									-
		toe/toe									-
		toe/toe									-
		toe/toe									-
											-
											-
		-	•								

Tomoki Ehara

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Contents

Back Ground

Operation

C	Demand	Setting	1

_				
_	VO	roi	CC	<u>`</u>
	VC	101	20	-

Demand	Setting	2	
--------	---------	---	--

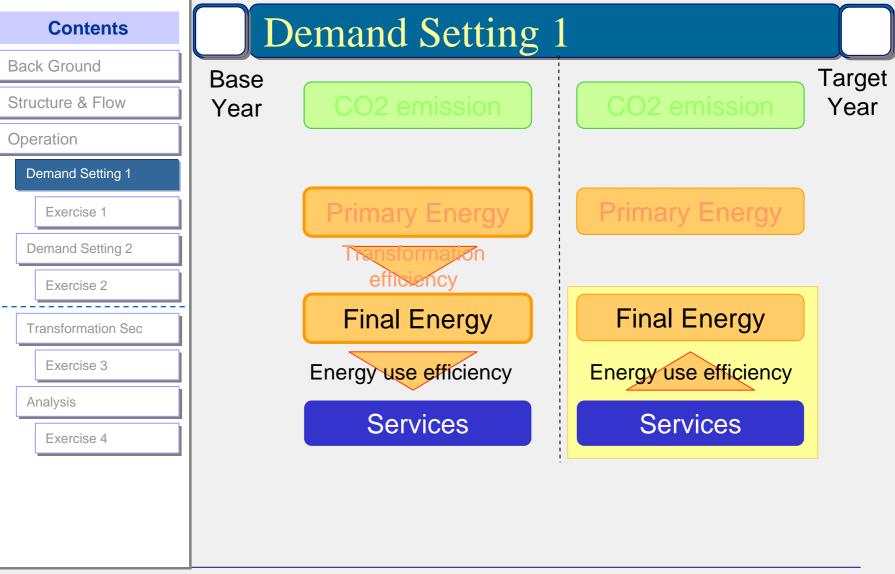
Exercise 2	2
------------	---

	Tra	nsfor	mation	Sec
--	-----	-------	--------	-----

Exercise 3

Analysis

Exercise 4


3. Service Demand

- Service demand in base year
 - Service demand (Mtoe) = Final Energy/EE
- Assume service demand in target year
- Reference case, Countermeasure case

					20	50			
	Unit	2000	R	EF	C	M CM/		/REF	
			А	В	Α	В	А	В	
Cool	Mtoe	4	4	4	4	4	90%	100%	
Warm	Mtoe	81	81	81	65	81	80%	100%	
Hot Water	Mtoe	55	55	55	55	55	100%	100%	
Cooking	Mtoe	60	60	60	30	60	50%	100%	
Others	Mtoe	5	5	5	5	5	100%	100%	
	Mtoe				0	0			
	Mtoe				0	0			
	Mtoe				0	0			
	Mtoe				0	0			
					0	0			
					0	0			

Tomoki Ehara

MIZHO

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3

Analysis

Exercise 4

Set service share to fulfill the service demand

4. Service share in target year

- Assume the technology used
- Check "total value" (=100%)

	Upit	Jnit 2050 A (CM)								
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
Warm	-	61%	8%	2%	10%	0%	3%	0%	16%	100%
Hot Water	-	0%	6%	50%	30%	0%	10%	0%	4%	100%
Cooking	-	7%	0%	1%	92%	0%	0%	0%	0%	100%
Others	-	0%	0%	0%	0%	0%	0%	0%	100%	100%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%
	-	0%	0%	0%	0%	0%	0%	0%	0%	0%

Contents

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3

Analysis

Exercise 4

5. Energy use eff. in target year

- Set energy efficiency of each energy use in Target Year
 - Keep consistency
 - The value can be relative value (Base Year=1.00)

	Unit	2050 A (CM)								
	UTIIL	COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	toe/toe								2.00	-
Warm	toe/toe	0.90	0.70	0.70	0.90		1.00		3.00	-
Hot Water	toe/toe	0.80	0.80	0.80	0.80	1.00	1.00		1.00	-
Cooking	toe/toe	0.80		0.50	0.45	0.45			0.70	-
Others	toe/toe								1.00	-
	toe/toe									-
	toe/toe									-
	toe/toe									-
	toe/toe									-
										-
										-

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

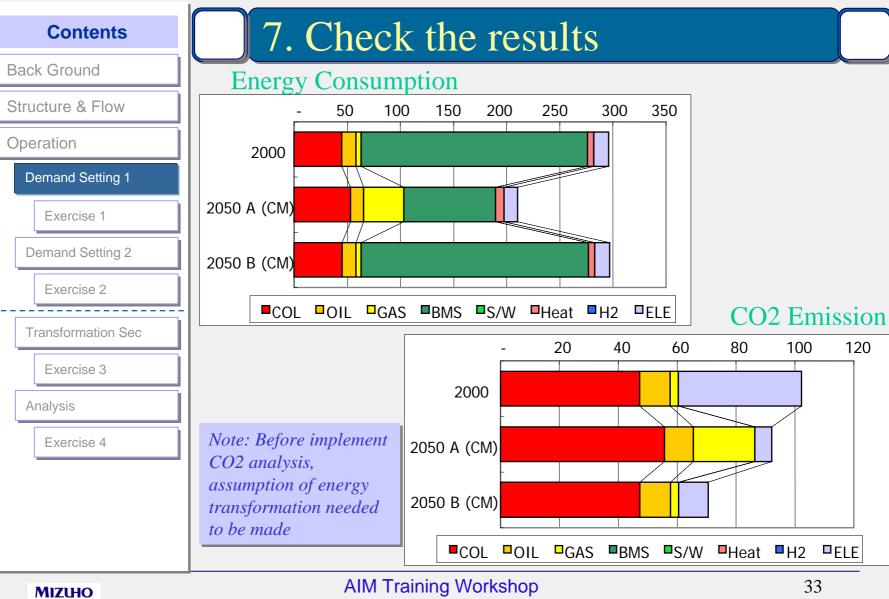
Exercise 2

Transformation Sec

Exercise 3

Analysis

Exercise 4


6. Energy Cons. in Target year

- Calculated automatically
- Additional Input
 - Generation: PV etc.
 - CHP: Fuel cells, Gas engine etc.

			2050 A (CM)							
		COL	OIL	GAS	BMS	S/W	Heat	H2	ELE	Total
Cool	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	1.8	1.8
Warm	Mtoe	50.6	8.0	2.4	8.3	0.0	2.4	0.0	4.0	75.7
Hot Water	Mtoe	0.0	4.2	35.0	21.0	0.0	5.6	0.0	2.0	67.8
Cooking	Mtoe	2.5	0.0	0.5	57.0	0.0	0.0	0.0	0.0	60.0
Others	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	5.0	5.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Mtoe	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Generation	Mtoe									0.0
Cogeneration	Mtoe									0.0
	Mtoe									0.0
Total	Mtoe	53	12	38	86	0	8	0	13	210

Tomoki Ehara

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Tomol	ki .	Eŀ	iar	а

Contents		
Back Ground		
Structure & Flow		
Operation		
Demand Setting 1		
Exercise 1		
Demand Setting 2	T • 1	
Exercise 2	Exercise 1	
Transformation Sec		
Exercise 3		
Analysis		
Exercise 4		
Мідно	AIM Training Workshop	34

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Contents

Rack Ground

Exercise 1

Dack Cround							
Structure & Flow							
Operation							
	Demand Setting 1						
		Exercise 1					
	Demand Setting 2						
	Exercise 2						
	Т	ransformation Sec					
	Т	ransformation Sec Exercise 3					
		Exercise 3					
		Exercise 3 nalysis					

- Make residential energy demand scenario(s) of your own country !!
 - Create dataset of final energy consumption in residential sector in base year by using EBT
 - Set energy use efficiency (base year)
 - Calculate service demand in base year
 - Assume "service demand", "service share", and "energy efficiency" in target Year
 - Check the results
 - Change the parameters and play around!!

Contents	
Back Ground	
Structure & Flow	
Operation	
Demand Setting 1	
Exercise 1	
Demand Setting 2	Demand Setting 2
Exercise 2	
Transformation Sec	(Ex. Other sectors)
Exercise 3	
Analysis	
Exercise 4	

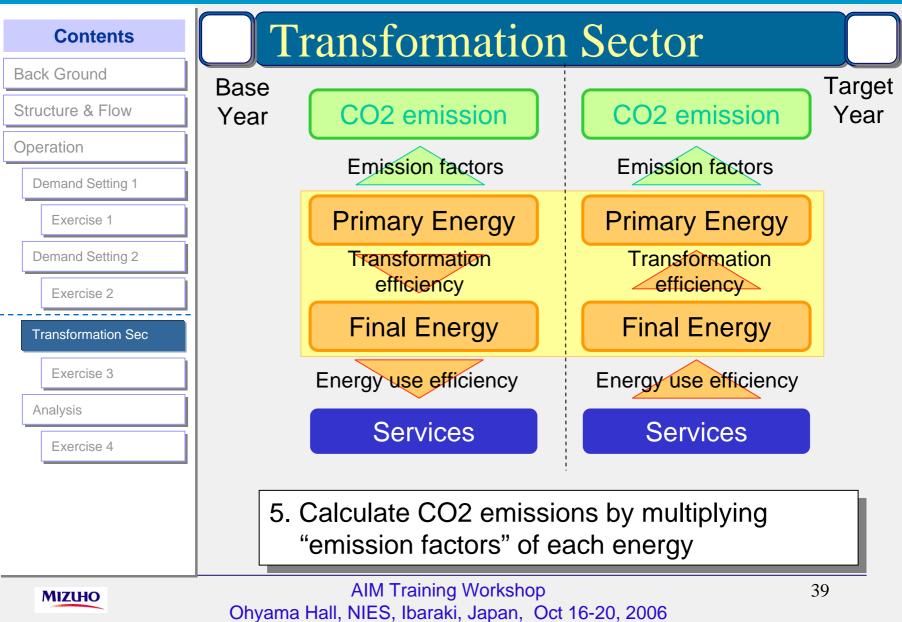
Contents

Back Ground

Exercise 2

S	tructure & Flow
С	peration
	Demand Setting 1
	Exercise 1
	Demand Setting 2
	Exercise 2
	Transformation Sec
	Exercise 3
	Analysis
	Exercise 4

- Make industrial, commercial, and transportation sector energy demand scenario(s) of your own country !!
 - Create dataset of final energy consumption in sectors above in base year by using EBT
 - Set energy use efficiency (base year)
 - Calculate service demand in base year
 - Assume "service demand", "service share", and "energy efficiency" in target Year
 - Check the results
 - Change the parameters and play around!!



_

Tomol	ki .	Eŀ	iar	а

Contents		
ack Ground		
tructure & Flow		
peration		
Demand Setting 1		
Exercise 1		
Demand Setting 2		
Exercise 2	Transformation Sector	
Transformation Sec		
Exercise 3		
Analysis		
Exercise 4		
Мігию	AIM Training Workshop	38

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Tomoki Ehara

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

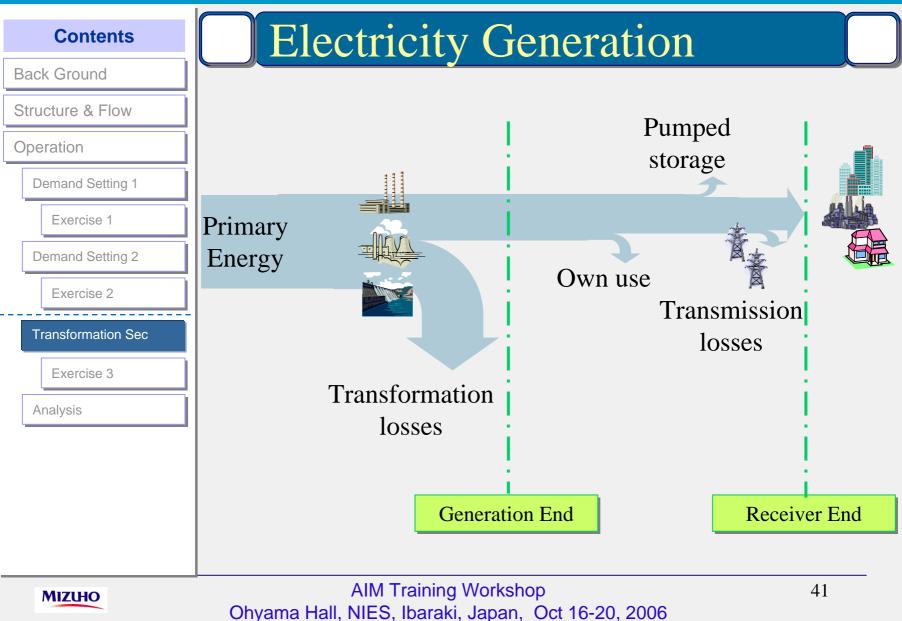
Exercise 2

Transformation Sec

Exercise 3

Analysis

Electricity Generation


• Goal: Primary energy consumed for electricity generation in target year.

Power generation sector

				2050							
	Solver	2000	Supply &	Demand	Only D	emand	Only S	Supply	No)	
	-		А	В	A	В	A	В	A	В	
1. El∈	ectricity demand at receiver	end									
	Mtoe	98	88	86	88	86	98	98	98	98	
2. Dif	fference between demand a	and supply									
	Mtoe	12.16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
3. El€	ectricity supply at receiver e	nd									
Elec	ctricity supply Mtoe	103	88	86	88	86	98	98	98	98	
Tra	nsmission Loss	6.84%	5.31%	5.31%	5.3%	5.3%	5.3%	5.3%	5.3%	5.3%	
4. Ele	ectricity supply before tranm	ission									
	ctricity supply Mtoe	111	93	91	93	91	104	104	104	104	
	mped storage (PS)										
	Ele. demand of PS Mtoe	0	1	1	0	0	1	1	0	0	
	Efficiency	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	100.0%	
	Generation of PS Mtoe	0	1	1	0	0	1	1	0	0	
	n use										
	Own use in plant Mtoe	6	4	4	5	5	5	4	6	6	
	Own use rate										
	COL	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	6.0%	
	GAS	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	4.0%	
	OIL	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	5.0%	
	NUC	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	4.4%	
	HYD	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	
	HYD(P)	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	0.5%	
	GEO	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	8.0%	

S

Contents

Back Ground							
Structure & Flow							
Operation							
Demand Setting 1							
Exercise 1							
Demand Setting 2							
Exercise 2							
Transformation Sec							
Exercise 3							
Analysis							

Electricity Generation

- Data setting for reference year
 - Electricity demand at receivers end (EBT or "EB_SD")
 - Electricity Transmission (& distribution) losses (EBT)
 - Efficiency of pumped storage (Def: ratio between consumed energy while pumping and generated energy)
 - Own use rate of electricity plant (EBT; Only aggregated data. Detailed information needed)
 - Electricity supply at generation end (EBT)
 - Primary Energy Consumption (EBT)

Tomoki Ehara

Contents

Back Ground

Operation

Structure & Flow

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3

Analysis

Electricity Generation

- Data setting for target year (scenario)
 - Transmission losses
 - Efficiencies of pumped storage
 - Own use rate
 - Mixture of energy
 - Thermal efficiency
- Click "Solver"!!
 - "Electricity supply at generation end" is controlled automatically so that the electricity demand of the end-user would be fulfilled
 - Primary energy supply for electricity generation is calculated
- Check if differences between demand & supply; 0
 AIM Training Workshop
 Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

Contents

Back	Ground
------	--------

Structure 8	Flow
-------------	------

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3

Analysis

Note: Solver

The Solver Add-in is an Excel add-in (add-in: A supplemental program that adds custom commands or custom features to Microsoft Office.) program that is available when you install Microsoft Office or Excel. To use it in Excel, however, you need to load it first.

1.On the **Tools** menu, click **Add-Ins**.

- 2.In the Add-Ins available box, select the check box next to Solver Add-in, and then click OK. Tip If Solver Add-in is not listed, click Browse to locate it.
- 3.If you see a message that tells you the Solver Add-in is not currently installed on your computer, click **Yes** to install it.
- 4.Click **Tools** on the menu bar. When you load the Solver Add-in, the **Solver** command is added to the **Tools** menu

Contents

Back Ground

Structure & Flow

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3

Analysis

Other energy transformation

- Click "EB_SD" sheet
- EBT (demand) is there !!

Name	Contents
EB_SD	Energy balance table (Countermeasures in energy enduse & transformation sector)
EB_S	Energy balance table (Countermeasures in energy transformation sector)
EB_D	Energy balance table (Countermeasures in energy enduse sector)
EB_0	Energy balance table (No counter measures = Reference case)

Contents

В	ack Ground
S	Structure & Flow
С	peration
	Demand Setting 1
	Exercise 1
	Demand Setting 2
	Exercise 2
	Transformation Sec
	Exercise 3
	Analysis

MIZHO

2000

Other energy transformation

- Excluding electricity generation (already calculated)
- CCS: Energy use for CCS ^(a) & amount of carbon captured in appropriate unit ^(b).
- Heat & Hydrogen: Put the negative value of heat used in demand side ^(c) and inputs of feedstock
- Coal/Oil/Gas: Losses during refining processes etc.

	COL	OIL	GAS	BMS	NUC	HYD	S/W	Heat	H2	ELE	Total	'90 =
Energy Balances (Mtoe)												
Power Gnr.	275	12	2	1	4	19	0			-100	213	
CCS					(a	l)					0	
Heat	35	4	1		<u> </u>	/		-25			15	
Coal/Oil/Gas	31	3									34	
Hydrogen								1			0	
Industrial	177	69	12	0			0	19	0	63	339	
Residential	45	13	5	213			0	6	0	14	296	
Commercial	0	15	9	0			1	0	0	22	46	
Trans. Prv.	6	67	0	0			0	0	0	1	74	
Trans. Frg.	0	0	0	0			0	0		0	0	
Enduse	227	164	26	213			1		0	100	756	
Total	569	182	28	214	4	19	1	0	0	0	1,017	
Feedstock in total		2										
Emission Factor (MtC/Mtoe)	1.05	0.80	0.55	0.00	0.00	0.00	0.00	-	-	-		
CO2 Gnr. (MtC)	597	145	16	Q	0	Q	0	_	-	-	757	
CO2 Dsp. (MtC)								-	-			
CO2 Ems. (MtC)	597	144.6	16	0	0	0	0	-	-	-	757	

Tomol	ki .	El	har	a
	VV 1		icii	u

Contents
Back Ground
Structure & Flow
Operation
Demand Setting 1
Exercise 1
Demand Setting 2
Exercise 2
Transformation Sec
Exercise 3
Analysis
MIZHO

Contents

Back Ground

Exercise 3

S	Structure & Flow								
С	peration								
	Demand Setting 1								
	Exercise 1								
	Demand Setting 2								
	Exercise 2								
	Transformation Sec								
	Exercise 3								
	Analysis								

- Input energy transformation data from EBT in base year and assume the changes in target Year
 - Fill in white cells in "PWR" sheets based on EBT in your country and developed scenario
 - Click "solver" and check the results
 - Fill in the following sheets based on EBT in your country and developed scenario
 - Fill in white cells in "EB_SD" sheets based on EBT in your country and developed scenario

Contents		
Back Ground		
Structure & Flow		
Operation		
Demand Setting 1		
Exercise 1		
Demand Setting 2		
Exercise 2	Analysis	
Transformation Sec		
Exercise 3		
Analysis		
		40

_

Tomoki Ehara

Back Ground

Structure & Flow

Operation

```
Demand Setting 1
```

Exercise 1

Demand Setting 2

Exercise 2

	-	Г	ra	ar	าร	fo	r	m	at	io	n	S	е	С
--	---	---	----	----	----	----	---	---	----	----	---	---	---	---

Exercise 3

Analysis

Factor analysis

$$C = D \times \frac{E}{D} \times \frac{C'}{E} \times \frac{C}{C'}$$

$$\frac{\Delta C}{C} = \frac{\Delta D}{D} + \frac{\Delta (E/D)}{(E/D)} + \frac{\Delta (C'/E)}{(C'/E)} + \frac{\Delta (C/C')}{(C/C')} + \text{Cross term}$$

- D: Driving forces (service demand)
- E: Energy Consumption

C': CO_2 emission without measures in transformation sector

C: CO₂ emission with measures in transformation sector

E/D: Energy Intensity

C'/E: CO₂ intensity in end-use sector (without measures in transformation sector)

C/C': Change of CO₂ intensity by measures in transformation sector

Contents

Structure	&	Flow	
-----------	---	------	--

Operation

Demand Setting 1

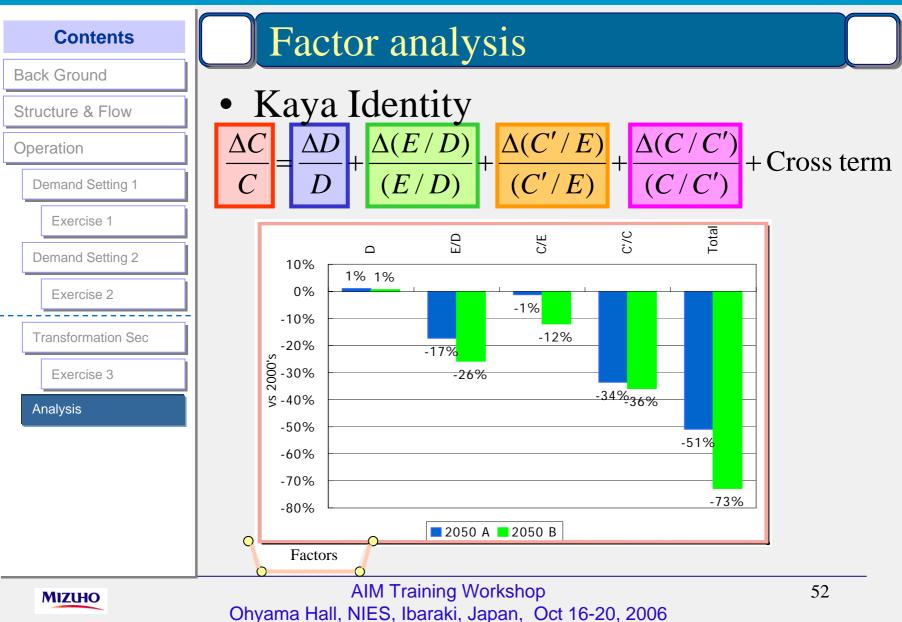
Exercise 1

Demand Setting 2

Exercise 2

Transformation Sec

Exercise 3


Analysis

Data input for factor analysis

- Differentiate the contribution of CO2 reduction from supply side and demand side
- Consistent scenario required

Name	Contents
EB_SD	Energy balance table (Countermeasures in energy enduse & transformation sector)
EB_S	Energy balance table (Countermeasures in energy transformation sector)
EB_D	Energy balance table (Countermeasures in energy enduse sector)
EB_0	Energy balance table (No counter measures = Reference case)

Tomoki Ehara

Contents	
Back Ground	
Structure & Flow	
Operation	
Demand Setting 1	
Exercise 1	
Demand Setting 2	
Exercise 2	
Transformation Sec	
Exercise 3	
Analysis	

Ohyama Ha

Please do not hesitate to ask CIN Trir Conversion of 10, 2006 S

MIZUHO

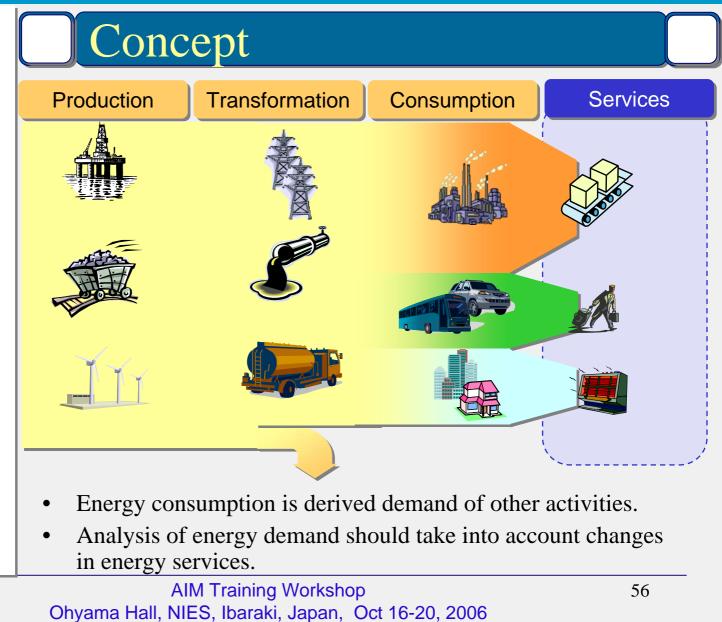
Energy transformation "EB_SD", "EB_S", "EB_D", "EB_0" • Click "EB_SD" sheet • EBT (demand) is there !! File Description Name EB SD Energy balance table (Countermeasures in energy enduse & transformation sector) EB_S Energy balance table (Countermeasures in energy transformation sector) Energy balance table (Countermeasures in EB_D energy enduse sector) EB_0 Energy balance table (No counter measures = Reference case)

MIZHO

Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

2000

Energy transformation


- Excluding electricity generation
- CCS: Energy use for CCS ^(a) & amount of carbon captured in appropriate unit ^(b).
- Heat: Put the negative value of heat used in demand side ^(c) and inputs of feedstock

200	10												
		COL	OIL	GAS	BMS	NUC	HYD	S/W	Heat	H2	ELE	Total	'90=100
Ene	e <mark>rgy Balances (Mtoe)</mark>										!	L'	
	Power Gnr.	275	12	2	1	4	19	0			-100	213	
	CCS			. 1	.	· (a	l)	1 1				0	1
	Heat	35	4	1		`			-25	5	F 1	15	1
	Coal/Oil/Gas	31	3	. 1	. 1	, I	. 1	1 1		/ 1	1 1	34	
	Hydrogen							!	<u> </u>	<u> </u>	<u> </u>	0	
	Industrial	177	69	12	0			0	19	0	63	339	
	Residential	45	13	5	213			0	6	0	14	296	
	Commercial	0	15	9	0			1	0	0	22	46	
	Trans. Prv.	6	67	0	0			0	0	0	1	74	1
	Trans. Frg.	0	0	0	0			0	0	0	0	0	
	Enduse	227	164	26	213			1	25	0	100	756	
	Total	569	182	28	214	4	19	1	0	0	0	1,017	L
	Feedstock in total		2									└── ′	L
Emi	ission Factor (MtC/Mtoe)	1.05	0.80	0.55			0.00	0.00	-	-	-	L'	L
000000000000000000000000000000000000000	2 Gnr. (MtC)	597	145	16	0	0	0	0			-	757	267
CO2 Dsp. (MtC)		\leq				<u>(</u> b	<u>) </u>	<u> </u>		-		 '	L
CO2	2 Ems. (MtC)	597	144.6	16	0	0	0	0	-	<u> </u>	<u> </u>	757	267

AIM Training Workshop Ohyama Hall, NIES, Ibaraki, Japan, Oct 16-20, 2006

MIZHO

Contents

Structure & Flow

Operation

Demand Setting 1

Exercise 1

Demand Setting 2

Exercise 2

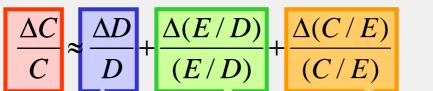
Transformation Sec

Exercise 3

Analysis

Factor analysis

• Kaya Identity $C = D \times \frac{E}{D} \times \frac{C}{E}$


D: Driving forces (service demand)

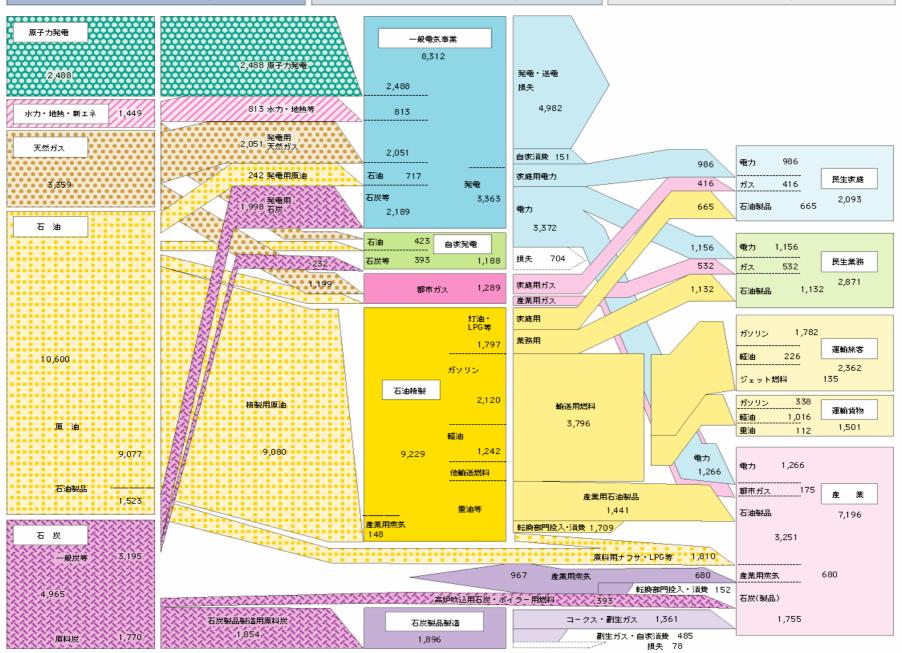
E: Energy Consumption

C: CO_2 emission with measures in transformation sector

E/D: Energy Intensity

C/E: CO₂ intensity

Changes in service demand


Changes in Energy Intensity Changes in Carbon Intensity

- 一次エネルギー国内供給 23,060

エネルギー転換/転換損失 ▲6,871

最終エネルギー消費 16,024

