

LOW CARBON SOCIETY SCENARIOS TOWARDS 2050 2006 AIM Training Workshop 16 -20 Oct 2006 - NIES

CASE STUDY – MALAYSIA

HO CHIN SIONG Universiti Teknologi Malaysia

- PENINSULAR + SABAH & SARAWAK
- EQUATORIAL CLIMATE DAILY TEMP 24.5-33.7 Celcius
- RAINFALL 2775mm
- HUMIDITY 79.8 %
- SIZE 330,252 SQ KM
- FAST DEVELOPING NATION

BASIC STATISTIC

- POPULATION 25.6MILLION (growth rate 2.6%pa)
- URBAN POPULATION 62.8% (2004)
- DENSITY 79 PERSONS/SQ KM
- 0-15YRS COHORT 32.9%
- HOUSEHOLD SIZE 4.5 PERSONS
- MAJOR INDUSTRIES MANUFACTURING(E & E, TEXTILE), OIL & PETROLUEM, PALM OIL .
- REAL GDP 5.2% (03), 6.2% (2004) INFLATION : 1.5%
- PER CAPITA US\$4046/PPP= US\$10, 124
- VEHICULAR OWNERSHIP 2.5 /HH

Scenarios 2050

Scenario A (2050)

- Population 98million
- High economy growth rate at 5-6% p.a.
- Heavy Industry and transport will continue to grow and propel the nation forward
- Biomass/ biofuel/ hydro
- Hugh efficient fossil fuel technologies CCS Common features
 - Developed nation status by 2020
 - Leap frog with IT and Hi- tech/ cyber cities Energy efficient production technology

Scenario B (2050)

- Population 63 million
- Medium economic growth rate at 4-5% p.a.
- Industry, bio tech and hi tech development- MSC corridor and cyber cities
- Renewable energysolar/wind/ H2
- Compact cities & green corridor

Primary Energy Consumption

- Malaysia consumption increases due to rapid growth
- Scenario A depend on fossil fuel & introduce hydro and biomass
- Scenario B marked increase in biomass, hydro and renewable energy.

Secondary Energy consumption

- Relatively high growth in industrial sector, followed by transport and housing.
- Energy consumed by Transport sector fall significantly in both scenarios.

CO2 Emission by Fuel

- Slight reduction of CO2 emission by fuel as compared with the case of Japan
- CO2 emission from Oil is still predominant in the 2050

CO2 Emission by Sector

- Industry sector is the main contributor of Co2 emission followed by transport.
- Scenario 2 residential sector in medium density and new construction garden city living

Industrial sectors

 Malaysia shows a relative high Demand contributed by economic growth in mfg and IT sector hence contributed to overall increase in CO2 emission.

Residential

- Factor analysis of CO2 emission shows small reduction in Malaysia as compared with Japan.
- However in the case of Malaysia Demand is high due to relative high positive economic growth and population.
- Positive C'/E (Co2 without counter measures).
- Scenario B shows a high reduction in E/D (energy intensity) and change in CO2 intensity (C/C') resulting from countermeasures in transformation

Commercial

 Commercial sector has quite similar pattern with Japan. Globalisation in retail and shopping pattern. Reduction in CO2 emission are observe din both cases.

Transport

 Transport sector experiences a sharp fall in CO2 emission in both cases. The imported advanced technology in hybrid vehicles, H2 fuel and widely use of bio-fuel in Malaysia contributed to this reduction

Overall scenario C02 emission

Malaysia has a positive figure in demand drive due to continuing population growth and economic growth.

Both cases show a reduction in Co2 emision in both scenarios A and B.

Conclusion

- Low Carbon society in developing country like MALAYSIA with small population and rich in resources is attainable with planned driving forces to reduce CO2 emission.
- This involves changes in
 - DEMAND (SD Service demand) and EE(Energy efficiency) and
 - SUPPLY (CI Carbon intensity reduction and CCS)

Among possible options are

- Society activity 5Rs
- Industry EE and CI (fuel cell/bio fuel)
- Residential EE and CI (PV/ fuel cell)
- Transportation- SD (public transport), EE and CI(fuel cell/ bio fuel)
- Energy supply CCS and CI