SO₂, NO₂ Emission Inventory in Korea

March, 2000

Dong Kun Lee
 Professor, Sangmyung University, Korea
 Tae Yong Jung
 Research Fellow, IGES, Japan
 Yong Joon Kim
 Senior Researcher, Korea Meteorological Administration, Korea
 Seong Woo Jeon
 Senior Researcher, Korea Environment Institute, Korea

1. Background

•The acidity of rainfalls was very severe in Korea. - "The Characteristics and Damage of Acid Rain in Korea" by National Environmental Research Institute of Korea(1995)

Acid rain of pH 3.5 was fallen at Sangmoon-Dong, Seoul.

- February, 1994

•Anthropogenic SO₂ emission in Far East Asian Region is about 24,000,000 tons, almost same level of North America or Europe.

SO₂ & NO₂ : Causes of acid rain
 Necessity of the emission inventory

•The inventory includes economic costs of mitigating SO₂ & NO₂ emission+ the cost of damage induced by from acid rain.

2. Objectives of Study

Situation There...

- The inventory of SO₂ and No₂ emissions are calculated by detailed regional level in Korea.
- In Korea, Ministry of Environment publishes the SO₂ and NO₂ emission data by provinces.
- The inventory data of SO₂ and NO₂ emission are not available at the local governmental level.
- It is more limited to project future SO₂ and NO₂ emission, based on the data of province level.

2. Objectives of Study (Cont'd)

What Includes...

- The GIS is to develop to represent the SO₂ and, No₂ emission by local governmental level & provinces.
 The data of provinces are collected and modified to show them at the map through GIS.
- 3. This work is extended to the local governmental level.
- It is necessary to figure out SO₂ and NO₂ emission in order to develop policy programs to mitigate them.
- The economic costs of mitigating SO₂ and NO₂ emissions will be analyzed, including the cost of damage induced by from acid rain.

3. Calculation of SO₂ and NO₂ Emission by Detailed Region

- Emissions of pollutants in Korea that cause the acid rain are calculated by local government, based on the data of 1996.
 Fuel types:
- gasoline, kerosene, diesel(sulfur content 1.0, 0.1%),
- B-A, B-B, B-C(sulfur content 4.0, 1.6, 1.0, 0.3%), anthracite, bituminous, LNG and LPG
- •Emission sectors :

power generation, industry, heating & transportation Cement and steel industries using bituminous in the process of production are separately treated.

Basic data source:

Heating, industry & transportation: Ministry of Environment, 1996 Power generation, the actual fuel type and consumption: Korea Electric Power Corporation (KEPCO), 1996

The total process is made up with 3 steps.

- Available Data for Each Detailed Regional Classifications
- Calculated fuel consumption in Heating, Industry, Transportation and Power Generation
- Based on the calculation, brought up with SO₂ and NO₂ Emission by 232 local governments.

1) Available Data for Each Detailed Regional Classifications

 According to the 'Clean Air Act' of Korea, the fuel types that are allowed in each local government are different: the mandatory region for diesel or lower sulfur B-C and the mandatory region for LNG.

<Table 1> Supplied Extension State of Low-Sulfur Residual Oil

Туре	1981	1982	1988	1992	1993	1994	1995	1996	1997
B -C Oil	Seoul (1.6%)	8 city/ District (1.6%)	27 city/ District (1.6%)	34 city/ District (1.6%)	18 city/ District (1.6%) 20 city/ District (1.0%)	17 city/ District (1.6%) 21 city/ District (1.0%)	19 city/ District (1.6%) 22 city/ District (1.0%)	42 city/ District (1.0%)	37 city/ District (1.0%) 24 city/ District (0.5%)
Diesel	Seoul (0.4%)	8 city/ District (0.4%)	27 city/ District (0.4%)	34 city/ District (0.4%)	38 city/ District (0.2%)	38 city/ District (0.2%)	41 city/ District (0.2%)	63 city/ District (0.1%)	Whole Nation (0.1%)

Numbers in parenthesis are sulfur content.

- 0.1%)
 It is mandatory to use 'clean fuel' such as LNG in the areas where the environmental standard would be violated. From 1988, it has been mandatory to use 'clean fuel' in commercial and public buildings in Seoul, whose capacity of boiler was bigger than 2.0 ton.

•Regulation reinforced (1991) :

- Commercial & public buildings in Seoul with boiler capacity bigger than 0.5 ton
- Residential apartments in Seoul with floor spaces larger than 30 'pyung'
- Commercial & public buildings in Seoul metropolitan areas (14 cities) with boiler capacity bigger than 2.0 ton
- Residential central heating apartments in Seoul metropolitan areas (14 cities) with floor spaces larger than 35 'pyung'.
- •Reinforcement extended to other major cities like Pusan & Taegu.

2) Heating

•Fuel consumption for heating by detailed regions is calculated by the share of the number of households and fuel types of each residential type in province. Process of calculation :

Fuel Consumption (Local) = Fuel Consumption (Province) × (Share of Residential Type(Local/Province) ×Share of Fuel Types) (1)

Number of households are calculated by residential types.
 (individual house, apartment, tenement house, complex house & house in store)

•To check whether certain fuel types are allowed in specific region or not to disaggregate to local government level.

•Fuel consumption patterns are different, depending on whether the area is urban or not. Therefore, it is necessary to classify the area, and then calculate fuel consumption by types.

<Table 2> Share of Fuel Consumption by Residential Type

	House		Apartment		Tenement		Complex		Store	
	U *	R *	U	R	U	R	U	R	U	R
Anthracite Coal	0.94	0.98	0.02		0.01		0.01		0.02	0.02
kerosene	0.76	0.91	0.08	0.01	0.07	0.03	0.02	0.00	0.07	0.05
Diesel	0.76	0.94	0.08	0.01	0.09	0.02	0.01	0.00	0.06	0.03
B-C			1.00	1.00						
LPG	0.74	0.90	0.11	0.02	0.08	0.02	0.01	0.01	0.06	0.05
LNG	0.38		0.44		0.12		0.03		0.03	

* U - Urban Area, R- Rural Area

3) Industry

 In Korea, the emission from manufacturing industries is monitored by amounts of annual fuel consumption. Hence, we calculate amounts of emission from industrial sector by detailed regions as follows: the number of emitters is multiplied by the weighted emission index.

Fuel Consumption of Province ×Emission Index of
Detailed Region)/ (Emission Index of Province) (2)Emission Index = Number of Manufacturer by Scale Types ×Weight (3)

• Also possible to calculate the amounts of emission from agriculture, mining and manufacturing industries. Since these proxy variables have little relationship with fuel consumption, Likely the approximation will have larger gaps. Hence, the latter method is not considered.

<Table 3> Fuel Consumption and Weight by Scale Type

	Fuel Consumption	Weight
1	10,000 -	150
2	2,000 -10,000	60
3	1,000 - 2,000	15
4	200 - 1,000	6
5	- 200	1

4) Transportation

Fuel consumption is different, depending on transportation modes.
To allocate amounts of fuel consumption to each detailed region by fuel types. (Equations (4) –(6)).
To calculate numbers of vehicles based on registration numbers of vehicles by vehicle types in each detailed region.

Gasoline = Gasoline Consumption in Province × (No. of Passenger Cars in Detailed RegionxRoad Index) / (No. of Passenger Cars in ProvincexRoad Index) (4) Diesel = Diesel Consumption in Province × (No of (Bus + Truck + Special Vehicle) in Detailed RegionxRoad Index) / (No of (Bus + Truck + Special Vehicle) in ProvincexRoad Index) (5) B-A, B-B, B-C Oil = B-A, B-B, B-C Oil Consumption in Province × (Tones of Ship-in-and-out in Detailed Region) / (Tones of Ship-in-and-out in Province (6)

- •The road index is defined as length of road paved in detailed region multiplies number of lanes, as in equation (7).
- Road classification: high-way, national road, province road & detailed regional road

Road Index = Length of High-way x4

+ Length of (National + Province + Detailed Regional) Roadx2 (7)

•If the number of vehicle registration at the detailed regional level is not available in province level, the number of population in that province is used for the proxy variable.

5) Power Generation

•The actual fuel consumption data of 1995 in each power plant located in specific detailed region is used for the calculation of emission in this sector. (KEPCO, 1996)

6) SO₂ and NO₂ Emission

- •SO₂ and NO₂ emission in heating, industry and transportation sectors in each detailed region is calculated, depending on types of fuel.
- These calculations are represented in Equations (8) (10), basically different emission factors multiplied by fuel consumption.

Coal: Emission(Ton/Year) = Emission Factor(kg/Ton)	
Fuel Consumption(Ton/Year)	
⊞10⁻³(Ton/kg)	(8)
Oil: Emission(Ton/Year) = Emission Factor(kg/kl)	
In the second secon	(9)
Gas: Emission(Ton/Year) = Emission Factor(kg/10 ³ m ³ , kg/kl)	
Fuel Consumption(10 ³ m ³ /Year, kl/Year) 810 ⁻³ (Ton/kg)	(10)

•Especially in transportation sector, No₂ emissions from gasoline and diesel are calculated as shown in equation (11).

Emission(Ton/Year) = Vehicle Index Driving Distance per day by Vehicle Types(km/day) Emission Factor(g/km) 365(days/year) 10⁻⁶(Ton/year) (11)

In <Table 4>, driving distance per day by vehicle type and emission factors are presented, which are based on the study of National Environmental Research Institute of Korea.

<Table 4> Driving Distance per Day by Vehicle Type and Emission Factor

Т	уре	Driving Distance per Day	Emission Factor		
Passenger Car		48.7	0.41		
Taxi		257.8	0.79		
Bus	Small	71.9	1.45		
	Medium	62.3	1.65		
	Large	242.0	13.29		
Truck	Small	73.0	1.49		
	Medium	99.0	1.65		
	Large	166.2	13.65		

5. Emission Inventory Map in Province Level

1) So₂ Emission

•So₂ emission in each province is shown at <Figure 1>-<Figure 4>.

- <Figure 1> : So₂ emission from all sector
- <Figure 2> : So₂ emitted from coal
- <Figure 3> : So₂ emitted from oil
- <Figure 4> : So₂ emission from LNG

<Figure 1> So₂ emission from all sector

• In Korea, total 1,365 thousand tons of So_2 were emitted in 1997.

 617 thousand tons were from industries & 354 thousand tons were from the combustion of coal and oil.

 Chung Nam &Kyung Nam provinces, much of So₂ were emitted.

<Figure 2> So₂ emission from Coal

- Total So₂ emission from coal was 511 thousand tons.
- Chung Nam province, So₂ emission from power generation sector was 113 thousand tons.
- The same trend was observed in Kyung Nam province, the share of power generation sector was 16%.

Trend in SOx Emission - All Sectors Using Coal -

<Figure 3> So₂ emission from Oil

- Total So₂ emission from oil was 845 thousand tons.
- Most of So₂ emission came from B-C oil.
- Pusan city, So₂ emission from transportation sector was
 135 thousand tons.

Trend in SOx Emission - All Sectors Using Oil -

<Figure 4> So₂ emission from LNG

• Total So₂ emission was 152 tons.

More than 75% of So₂ from gas combustion were emitted in Seoul, Inchon city & Kyunggi province, where it was mandatory to use gas in these areas.

- All Sectors Using GAS (LNG+LPG) -

5. Emission Inventory Map in Province Level

•No₂ emission in each province is shown at <Figure 5>-<Figure 8>.

- <Figure 5> : No₂ emission from all sector
- <Figure 6> : No₂ emitted from coal
- <Figure 7> : No₂ emitted from oil
- <**Figure 8**> : No₂ emitted from LNG

<Figure 5> No₂ emission from all sector

 In Korea, total 1,278 thousand tons of No₂ were emitted in 1997.

 628 thousand tons were from transportation sector & 378 thousand tons were from industries and 203 thousand tons from power generation sector.

 No₂ emission from heating is spread in nationwide.

<Figure 6> No₂ emission from Coal

- Total No₂ emission from coal was 383 thousand tons.
- Jun Nam & Kyung Buk province, No₂ emission from industries took big share.

Trend in NOx Emission

- All Sectors Using Coal -

<Figure 7> No₂ emission from Oil

- Total No₂ emission from oil 815 thousand tons.
- Most of No₂ emission was concentrated around Seoul area and big cities.

Trend in NOx Emission - All Sectors Using Oil -

<Figure 8> No₂ emission from LNG

- All Sectors Using Gas (LNG+LPG)-

• Total No₂ emission was 80 tons.

Inchon city & Kyunggi province,
 24 thousand tons and 20 thousand
 tons of No₂ were emitted, which
 covered in these areas More than
 50% of total emission together.

6. Emission Inventory Map in Detailed Regional Level

1) So₂ Emission

So₂ emission in all 232 cities and districts at <Figure 9>-<Figure 13>.

- < Figure 9> : So₂ emission from all sector
- <**Figure 10>** : **So**₂ emitted from industries
- <Figure 11> : So₂ emission from heating
- < Figure 12> : So₂ emission from transportation
- <Figure 13> : So₂ emission from power generation sector

<Figure 9> So₂ emission from all sector

•Total 1,420 thousand tons of SO₂ were emitted in 1995.

In Kwangyang city, Pohang city and Dong-gu in Pusan, Bohyung city, Ulsan city, SO₂ emission was severe, the share of which in each city was 7.9%, 7.7%, 6.3%, 5.1%, and 4.8%, respectively. Emission Quantity of Sulfur Dioxide

<Figure 10> So₂ emission from industries

•Total SO₂ emission from coal was 690 thousand tons, which covered 49% of total emission.

 It is worthwhile to note that in Kwangyang city and Pohang city, integrated steel making plants were located,

•In these two cities, 25% of total SO₂ emission from industries was covered.

Emission Quantity of Sulfur Dioxide

- Industrial Sector -

<Figure 11> So₂ emission from heating

 Total emission was 119 thousand tons, which shared about 8% of total SO₂ emission.

 It is observed that SO₂ emission from heating was relatively evenly spread to nationwide.

 In small cities, Jinju, Sooncheon, and Geoje, it was more severe, where fuel regulation has not been mandatory. Emission Quantity of Sulfur Dioxide

<Figure 12> So₂ emission from transportation

•Total emission in this sector was 322 tons, which covered about 23% of total emission.

 In Dong-gu of Pusan and Ulsan city, where important industrial seaports were located, SO₂ were emitted more than other regions.

•These two regions covered 36% of total emission in this sector.

<Figure 13> So₂ emission from power generation sector

•This sector shared about 20% of total emission, which was 290 thousand tons.

•The blue areas imply places where there were no power plants.

In Boryung city, Pyubgtak city,
 Sacheon city and Ulsan city,
 where fossil fuel fired power plants
 were located, much of SO₂ emission
 is observed.

Emission Quantity of Sulfur Dioxide

6. Emission Inventory Map in Detailed Regional Level (Cont'd)

2) No₂ Emission

No₂ emission in all 232 cities and districts at <Figure 14>-<Figure 17>

- <Figure 14> : No₂ emission from all sector
- < Figure 15> : No₂ emitted from transportation
- <Figure 16> : No₂ emission from heating
- <Figure 17> : No₂ emission from power generation sector

<Figure 14> No₂ emission from all sector

•In Korea, total 1,230 thousand tons of NO_2 were emitted in 1996.

It shows the total emissions of NO2, Pohang city, and Kwangyang city emitted more NO2, since steel industries are located in two cities.

<Figure 15> No₂ emission from transportation

 This finding reflects the fact that Ulsan is an industrial city which has high rate of truck registered.

 Masan city, Suwon city, Sungnam city show similar trends.

•Kwangyang city and Pohang city, much of NO_2 was emitted like the case of SO_2 emission.

<Figure 16> No₂ emission from heating

Total emission was 70 thousand tons.

 It is also observed that NO₂ emission from heating was relatively evenly spread to nationwide.

•Ulsan, Suwon, Pohang, more emission of NO₂ was observed. Emission Quantity of NOx

· Residential & Commertial Sector ·

<Figure 17> No₂ emission from power generation sector

•This sector emitted 200 thousand tons, which was second smallest after heating sector.

•As the case of SO₂ emissions, in this figure, Boryung city, Pyugtak city, Sacheon city and Ulsan city, where fossil fuel fired power plants were located, much of SO₂ emissions are observed.

Emission Quantity of NOx

- Electricity Generation Sector -

7. Conclusion and Future Study

- •The purpose of this study is to identify SO₂ and NO₂ emission inventories by detailed regional level to tackle the issue of 'Acid Rain.
- •Basic inventory GIS will provide fundamental bases for this analysis.
- •First, we develop GIS of SO₂ & NO₂ emission inventories, using data of Ministry of Environment, from 1984 to 1997 at province level.
- •Total SO₂ emission in 1984 was 1,226,000 tons and 1,356,000 tons in 1997;final energy consumption was increased from 44.8 million TOE to 139.6 million TOE during the same period. This is mainly due to the fuel substitution to lower sulfur oil and natural gas.
- •Total NOx emission in 1984 was 756,000 tons and 1,278,000 tons in 1997, lower than the growth rate of final energy demand; NO₂ emission continuously increased, compared with the trend of SO₂ emission.

7. Conclusion and Future Study(Cont'd)

•The estimation of SO_2 emission inventory in detailed regional level (cities and districts) is proper enough by the method developed here.

•Emission from cement & steel industries and power generation sector is directly based on the emission data of each city and district.

 Emission from other sector is also based on currently available data, which seems to be reasonable.

 However, due to the limitation of obtaining data on large point, it is possible to overestimate or underestimate the emission from large points.

7. Conclusion and Future Study(Cont'd)

•For further examination on identifying emission sources in detailed regional level, followings are necessary.

First, in industrial sector, it is necessary to separate large point sources where the capacity of boiler is larger than 100 tons. The data for these sources are available internally in Ministry of Environment for environmental management.

Second, in power generation sector, the desulsurization facilities will be installed at 17 power plants from this year. Expected SO₂ emission will be reduced drastically in this sector. Hence, it is necessary to take the change in this sector into accounts for further study.

7. Conclusion and Future Study(Cont'd)

•For NO₂ emission, there is difficulty to estimate it by detailed regional level due to the following reasons.

First, in Korea, the area of city and district is relatively narrow, so that much of moving pollutant sources is utilized beyond the city and district.

Furthermore, the basic data such as vehicle distance per day by transportation mode is not available at detailed regional level.

Hence, it is considered to develop a method to estimate NO₂ emission by detailed regional level like in SO₂ emission.

All Sectors of NO₂

Point sources of all Sectors

Emission Quantity of NOx

