

March, 2002

Korea Impact Project Team

- Jeon, Seong-Woo(KEI)
- Jung, Hui-Cheul(KEI)
- Lee, Dong-Kun(Sangmyung Univ.)

Korea Environment Institute

Contents

1. Introduction

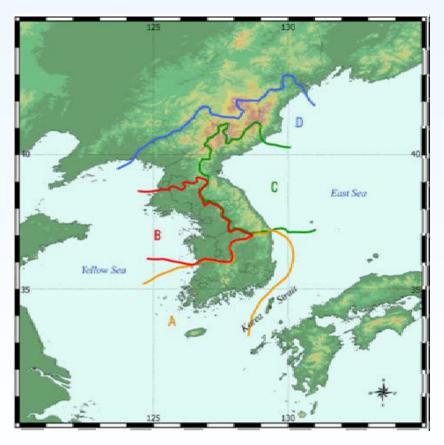
2. Study area

- 3. Data preparation
- 4. Data Analysis
- **5. Results and Proposals**

1. Introduction

Objectives

- To prepare primary data and conduct the modeling of the forest distribution assessment using AIM impact model
- To verify the validity of the modeling results
- To assess the change in economical efficiency of the forest through climate change


Results and Policy Proposals

- In case that the yearly mean movement growth rate of the forest is below than 0.25km/yr, it is estimated that there will be a loss of *US\$3.5billion annually* due to the futility of forest adaptation in 2100.
- In the adaptation study of specific species, **the Pine** (*Pinus densiflora*) which has 1.5km/yr moving velocity is well adapted. but the **unsuitable plant area ratio** will increase to **29%**.
- The establishment of the integrated impact assessment is necessary to fully assess the impact of forest and other ecosystem fields. This includes a correspondence plan at national level and continuous establishment of the basic data.

2. Study area

The Korean peninsula is separated to 4 small regions regarding climate and forest Type.

< Study area (longitude $120^{\circ} \sim 135^{\circ}$, latitude $30^{\circ} \sim 45^{\circ}$) >

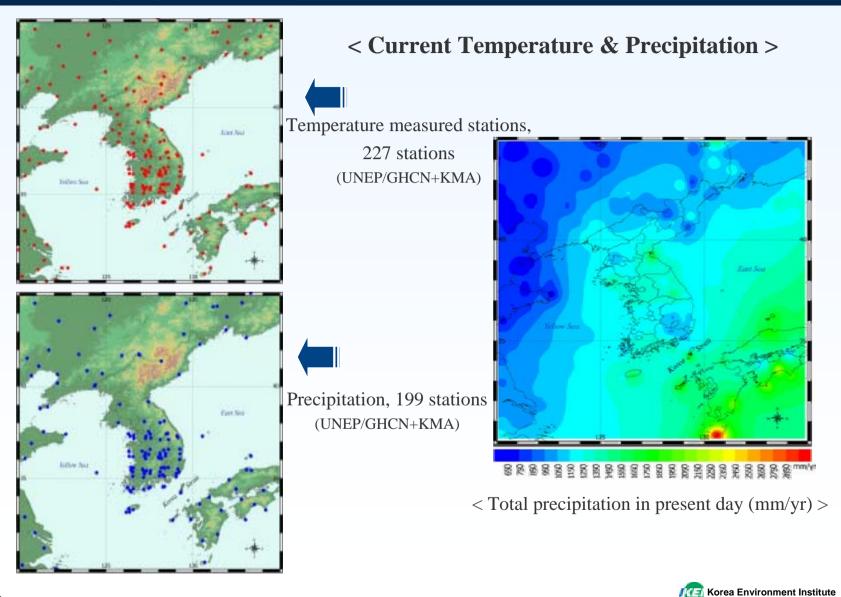
< Data >

□ IPCC Data Distribution Center

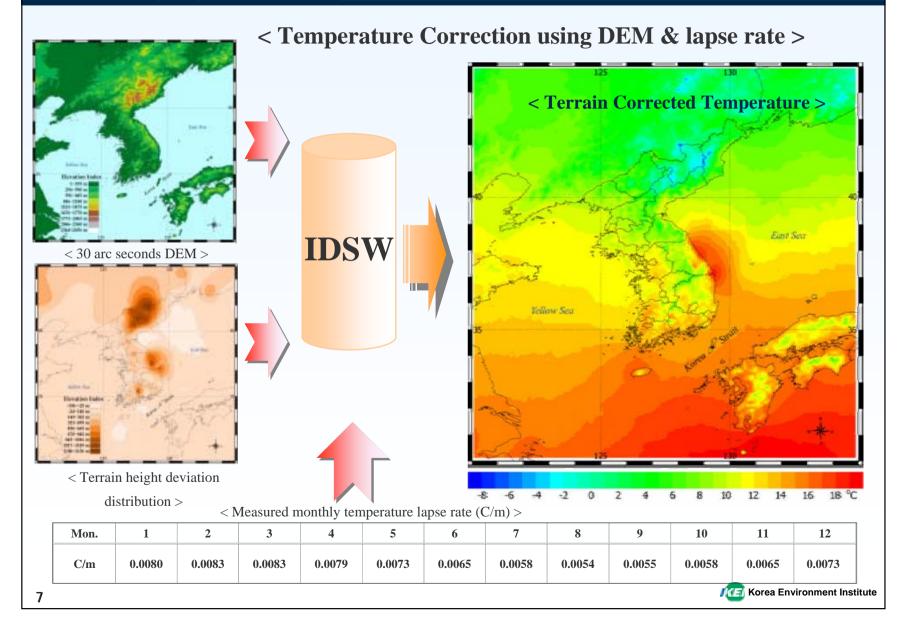
□ An IS92a-type forcing scenario

Up to 2100 and forcing details are greenhouse gas only

□ mean-monthly files , Time slice is 2070-2099


GCM

- CCSR /NIES
- CCCma
- CSIRO MK2
- HadCM2
- ECHAM4


3. Data preparation

Current Temperature and Precipitation

3. Data preparation

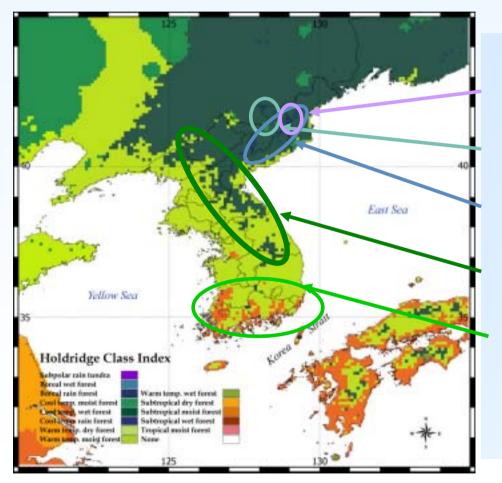
Temperature Correction using DEM & lapse rate

				T ə	cm >				
	Tasm	0.5	1.0	1.5 ^I a	sm2.0>	2.5	3.0	3.5	4.0
	Α	0.6	1.1	1.7	2.3	2.8	3.4	4.0	4.5
Temp.	В	0.6	1.2	1.8	2.4	3.0	3.6	4.1	4.7
	С	0.6	1.2	1.8	2.4	3.0	3.6	4.2	4.8
	D	0.6	1.2	1.8	2.4	3.0	3.7	4.3	4.9
	Α	3.0	6.0	9.0	12.0	15.0	18.0	21.0	24.0
Precip.	В	2.8	5.6	8.3	11.1	13.9	16.7	19.4	22.2
(%)	С	2.9	5.8	8.6	11.5	14.4	17.3	20.2	23.1
	D	3.6	7.2	10.7	14.3	17.9	21.5	25.0	28.6

< Mean temperature & precipitation change in summer season, relation with

< Mean temperature & precipitation change in winter season, relation with tasm >

	Tasm	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
	Α	0.7	1.3	2.0	2.7	3.4	4.0	4.7	5.4
Temp.	В	0.9	1.8	2.6	3.5	4.4	5.3	6.1	7.0
	С	1.0	1.9	2.9	3.9	4.9	5.8	6.8	7.8
	D	1.0	2.0	3.1	4.1	5.1	6.1	7.1	8.1
	Α	-0.4	-0.8	-1.2	-1.6	-2.0	-2.4	-2.8	-3.2
Precip.	В	1.2	2.5	3.7	4.9	6.2	7.4	8.7	9.9
(%)	С	1.0	2.1	3.1	4.1	5.2	6.2	7.2	8.3
	D	2.8	5.6	8.4	11.2	14.0	16.7	19.5	22.3


<	The climate	change ii	mpact on	the Korea	<pre>peninsula(climate) ></pre>
---	-------------	-----------	----------	-----------	------------------------------------

Tasm		Tempe	erature		Precipitation					
1 45111	1.0	1.5	2.0	2.5	1.0	1.5	2.0	2.5		
Α	0	0	++	+++	0	0	0	0		
В	0	++	+++	+++	0	0	0	0		
С	0	+++	+++	+++	0	0	0	0		
D	0	+++	+++	+++	0	0	0	+		
Sign			-	0	+	++	+++	Unit		
Temp. change				< 2.25	2.25 ~2.5	2.5~ 2.75	> 2.75	, increase		
Precip. change	< -45	-45~ -30	-30~ -15	-15~ 15	15~ 30	30~ 45	> 45	%, change		

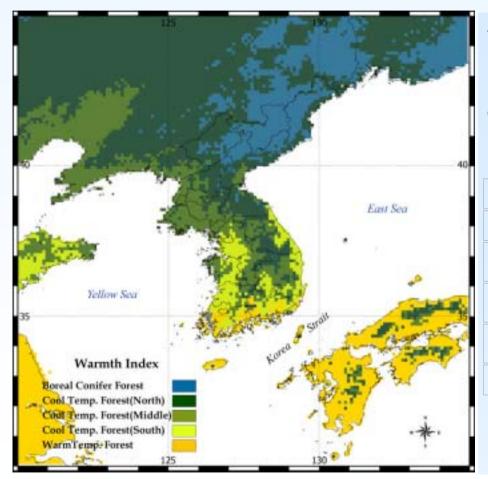
The Bio-Climate Classification by HOLDRIDGE Model

< Holdridge Class Change Result from 1990yr to 2100yr> (example of Scenario=IS92a,GCM=HadCM2)

Subpolar Tundra : Top of the Mt. BAEKDU

Boreal Wet Forest : Around of the Mt. BAEKDU

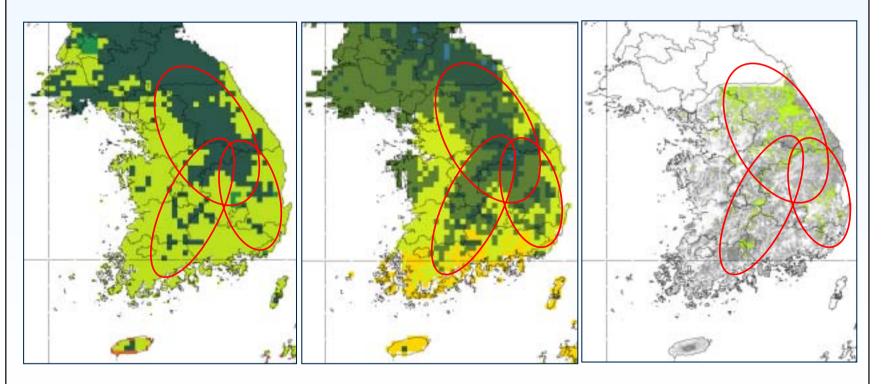
Boreal Rainforest : GAEMA Highlands


Cool Temperate Wet Forest : From BAEKDU to JIRI Mountain Range, most parts in North Korea

Warm Temperate Moist Forest : Middle and South Region

U Subtropical Dry Forest : South Region

< Bio-Climate Classification using Warmth Index >

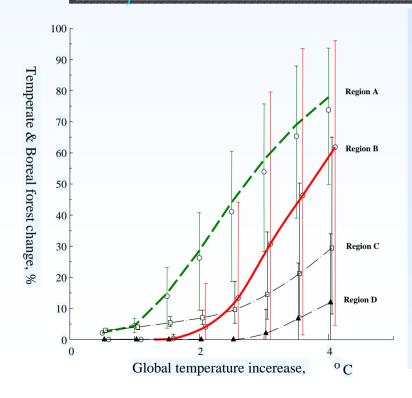

Warmth Index(WI) = (Tmean,monthly -5), in monthly mean temp. is more than 5

Coldness Index(**CI**) = - (Tmean,monthly -5), in monthly mean temp. is more than 5

Forest Class	Range
Boreal Conifer Forest	WI < 55
Cool Temperate Forest Northern Part	55 ~ 85
Cool Temperate Forest Middle Part	85 ~ 110
Cool Temperate Forest Southern Part	WI > 110
Warm Temperate Forest	CI < 10

< Enlargement of Cool temperature middle part in each classification >

<Holdridge>


<Warmth Index>

<Vegetation Map > (Quercus mongolica)

< Decrease in temperature/boreal forest, relation with Tasm >

	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0
A(%change	2.2	4.4	14.8	28.5	44.1	57.7	69	77.9
B(%change	0	0	0.3	4.1	13.3	30.7	46.3	61.8
C(%change	3	4	5.4	7	9.6	14.5	21.2	29.4
D(%change	0	0	0	0	0	2	6.7	11.9

- South region

Tasm=2, forest distribution change will be 30% If If

Tasm=4, change rate will be more than 80%

- West region

Tasm=2 , forest distribution change will be 4% Tasm=4, change rate will be more than 60%If Forest type will be changed dramatically. If tree moving velocity is so fast, forest will be partly withered.

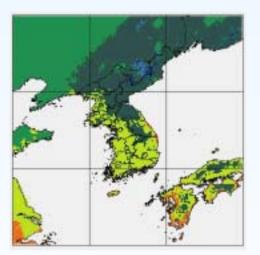
- East region

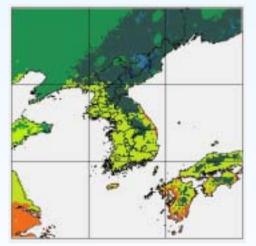
Tasm=2, forest distributed change will be 7% If

If Tasm=4 , change rate will be more than 30%

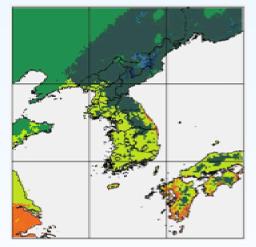
- North region in the Korean peninsula

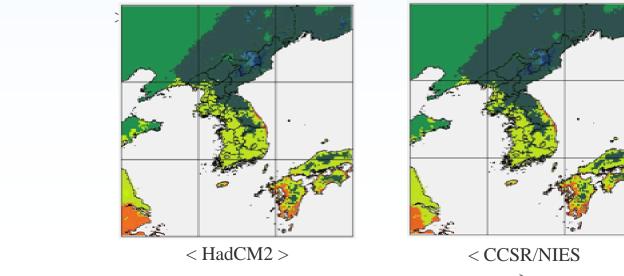
Tasm=2, there will be no change in temperate If /boreal forest


, change rate will be 12% in western part If Tasm=4

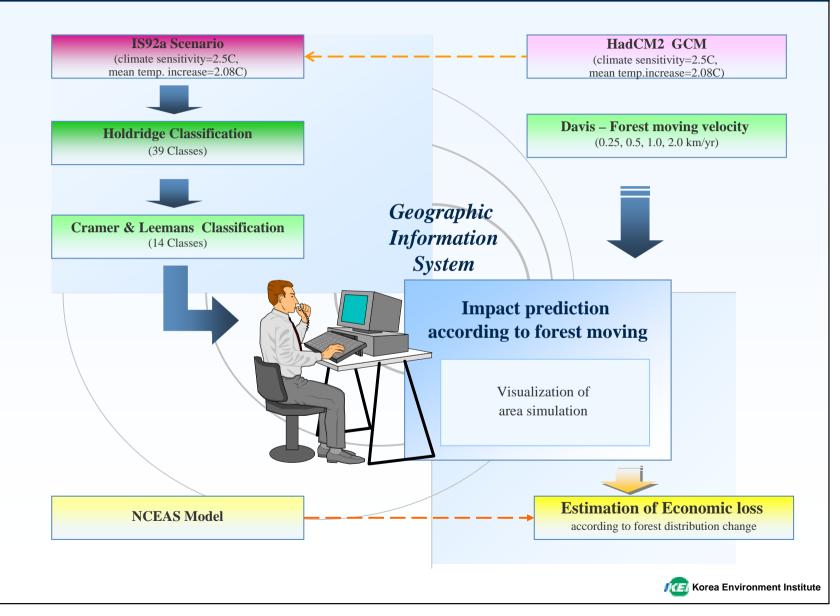

Application HOLDRIDGE Model

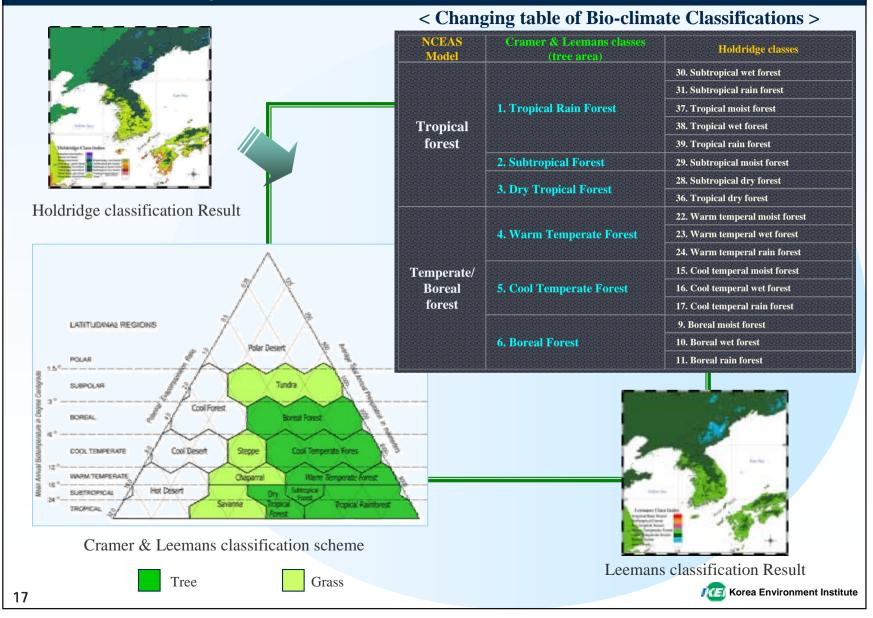
4. Data Analysis


< Holdridge Classification Results in 2*CO2 >

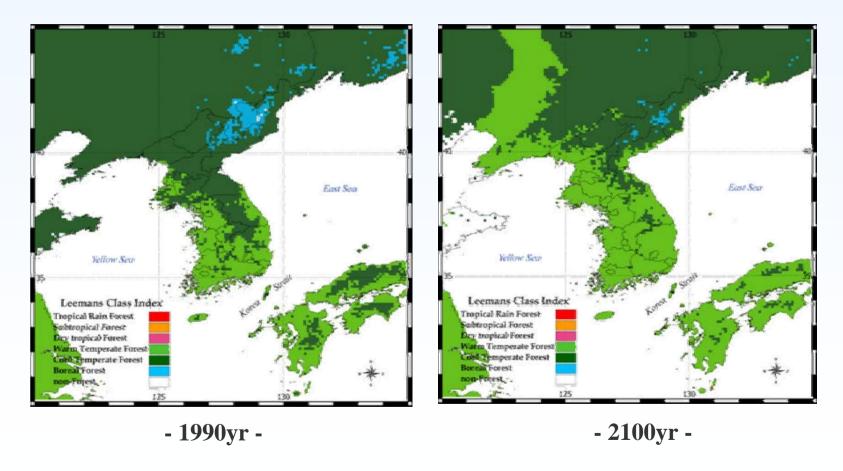

< CSIROMK2

< ECHAM4 >

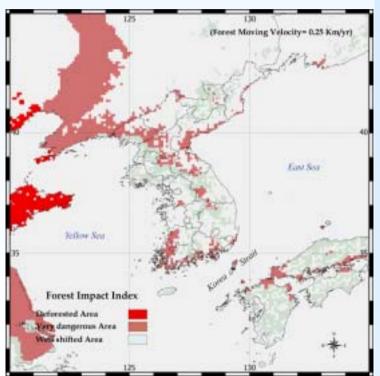

Im Korea Environment Institute


< The Climate Change Impact on the Korean peninsula(temperate/boreal forest) >

Tasm		Forest change(Temperate/Boreal)												
1 a5111	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0						
Α	0	0	0	-										
В	0	0	0	0	0	-								
С	0	0	0	0	0	0	-	-						
D	0	0	0	0	0	0	0	0						
		·		<legend></legend>				1						
notation			-	0	+	++	+++	Unit						
Forest change	< -60	-60~ - 40	-40~ - 20	-20~ 0	- -			% change						



The climate impact of the bio-climate classes and adaptation relation with tree moving velocity



< Cramer and Leemans Classification(Scenario=IS92a, GCM=HadCM2) >

< Forest impact and change pattern relation with tree moving velocity >

Warm Temperate Forest and Cool Temperate Forest are mainly distributed the Korean peninsula in present day, and the whole place of GAEMA highlands is covered by Boreal Forest

Bio-climate class in 2100 will not be changed, but distribution and area of forest will be changed

According to mean moving velocity(0.25km/yr) of trees in 2100, there will be no place where forest withered in the Korean peninsula

High extinctive area

South Korea : 14% of 99,800km²

;South coast and Western part of Cheonla-province, mostly Temperate forest

North Korea : 17.9% of 122,762km²

; Inland of Pyungan-province and the borders, Eastern part of Hamkyung-province and so on, mostly Cool temperate forest

< Forest impact and change pattern in 2100, relation with tree moving velocity >

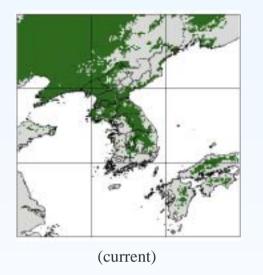
(Unit : area%)

			South korea								1	North	ko	rea				
Clima	to change pattern	0	.25	0.50		1.0		2.0	(0.25	(0.50		1.0		2.0		
Cima	te change pattern	kn	n/yr	km/yr	k	m/yr	k	m/yr	kı	m/yr	kı	m/yr	kı	n/yr	kı	n/yr		
	Leemans class No.	61	.3%	61.3%	6	1.3%	6	1.3%	5	7.7%	5	7.7%	5	7.7%	-5%	7.7%		
a	4] [56.3	56.3	1	56.3		56.3	1	7.2		7.2	1	7.2		7.2		
a	5	11	5.0	5.0		5.0		5.0		47.5		47.5	1	47.5		47.5		
	6		-	-		-		-		-		3.0		3.0		3.0		
	Leemans class No.	24	1.7%	33.6%	3	8.7%	3	8.7%	2	4.1%	3	5.3%	4	1.8%	4	2.0%		
ь	4		4.1	10.1		15.3		15.3		-		-		-		-		
Ľ	5] [20.6	23.4		23.4		23.4		14.0		24.8		31.3		31.5		
	6		-	-		-		-		10.1		10.5		10.5		10.5		
	Leemans class No.	14	1.0%	5.2%		-		-	1	7.9%	6	5.8%	0	.2%		-		
C ¹	4		11.2	5.2		-		-		-		-		-		-	,	Wither
Ľ	5		2.8	-		-				175		6.8		0.2		-		vv iuler
	6		-	-		-		-		0.4		-		-		-		
d				No in	пp	act				No im			mpact					Extinctive
е			No impact			act			0.3%		0.3% 0		0.3% 0.3%		.3%			
f			No impact								No it	np	act					
8		No impact					No impact											
Sum		10	100% 100% 100%			1	100%	1	00%	1	.00%	1	%00	1	00%			

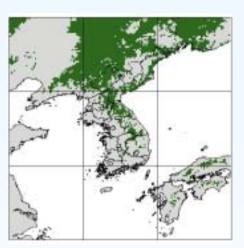
c* : Bio-climate class is changed, but there is no invasion of an exotic plant from the out of moving range during 110yr

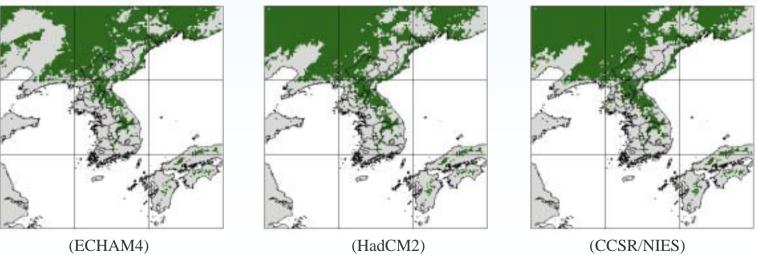
Rorea Environment Institute

< An Economic loss of tree region in NCEAS Model >

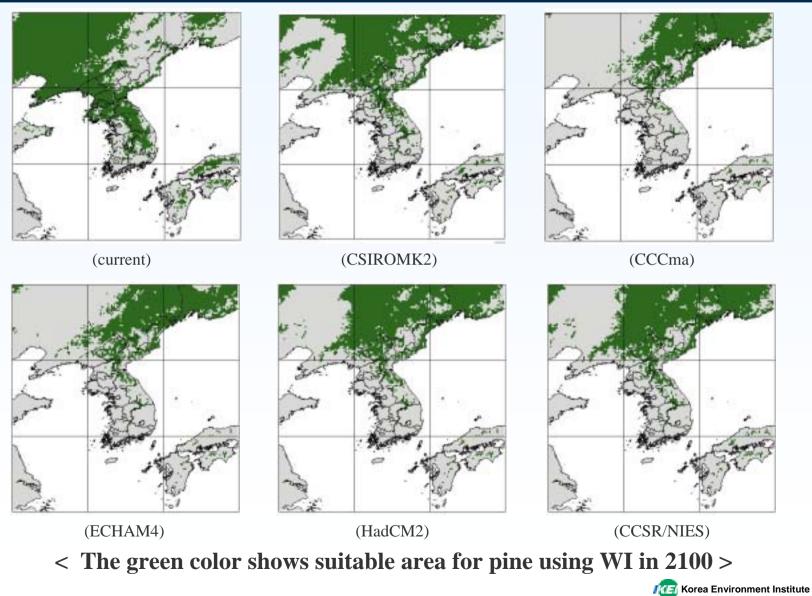

(Unit : 1994 U.S million\$/yr)

		South	korea			North	korea	
Tree moving velocity	0.25 km/yr	0.50	1.0	2.0	0.25 km/yr	0.50	1.0	2.0
area		99,8	00 km ²			122,7	762km²	
Area % of c*	14.0 %	5.2%	-	-	17.9 %	6.8%	0.2%	-
loss	4225	1555	-	-	6636	2512	71	-
Increased grassland value	3246	1195	-	-	4144	1569	44	-
Net loss	976	360	-	-	2492	943	27	-


Ref : Costanza, R. et al.(1997), The Value of the the world's ecosystem services and natural capital. NATURE, 387, pp 253-260


The climate impact of the pine and adaptation relation with tree moving velocity

(CSIROMK2)


(CCCma)

< The green color shows suitable area for pine using WI in 2050 >

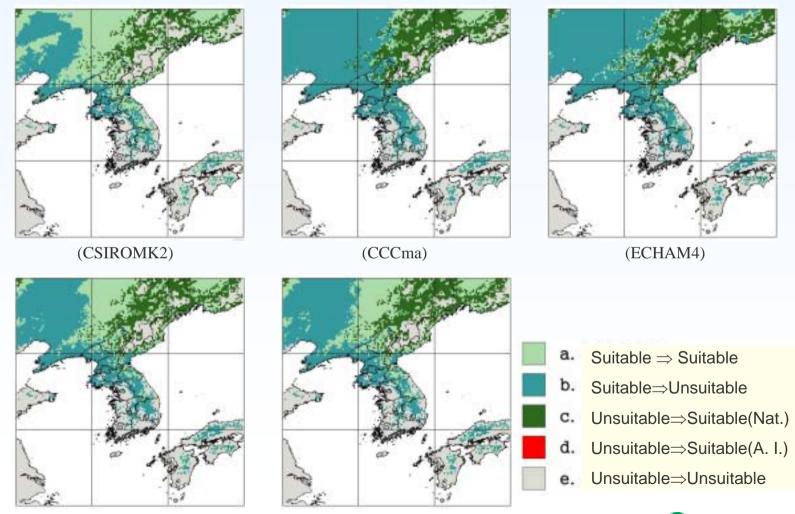
The climate impact of the pine and adaptation relation with tree moving velocity



< The Adaptation Pattern of A Species by the Climate Change >

	Plantable Possibility							
	樹種別 生育 可能性	Effect to forest(specie	es)					
current	future climate	地域 森林 影響						
現在氣候	未來 氣候							
	suitable area							
suitable	生育 適合	a) A species is not changed	no change					
area	(Bio-climate class is not changed)	樹種 變化 無	自然適應					
生育	(氣候帶 變化 無)							
適合 地域	unsuitable area 生育不適合地域	b) The concerned species is not able to grow up 該當樹種 生育 不可能 地域	change to the different species 樹種轉換 必要					
unsuitab		The concerned species moves	naturally adapted 自然適應					
le area 生育 不適合 地域	生育適合地域	d) The concerned species cannot move into the area naturally 移動不可能地域	artificial intervention is needed 人爲的 介入必要					
	unsuitable area 生育不適合地域	e) Not a concerning species area 非關心地	-					

< The Adaptation Pattern of the Pine in 2050 >



adapta	tion			Areal 1	atio(%)			
patte		CSIRO MK2	CCCma	ECHAM4	HadCM2	CCSR /NIES	mean	area(km²)
	а	20.49	11.82	13.79	15.37	17.64	15.82	15,791
Gauth	b	14.88	23.55	21.58	20.00	17.73	19.55	19,508
South	с	0.30	0.49	0.49	0.49	0.39	0.43	433
korea	d	-	-	-	-	-	-	-
	e	64.33	64.14	64.14	64.14	64.24	64.20	64,069
sum	1	100.00	100.00	100.00	100.00	100.00	100.00	99,800
	а	45.80	29.55	32.58	37.49	39.08	36.90	45,300
Marth	b	13.68	29.93	26.91	22.00	20.41	22.59	27,726
North	с	6.42	11.87	12.55	8.99	8.47	9.66	11,859
Korea	d	-	-	-	-	-	-	-
	e	34.09	28.65	27.97	31.52	32.05	30.85	37,877
sun	ı	100.00	100.00	100.00	100.00	100.00	100.00	122,762
			Т	otal Area				222,562

< The adaptation result of pine tree in 2050 >

< The Adaptation Pattern of the Pine in 2100 >

ICE Korea Environment Institute

27

(CCSR/NIES)

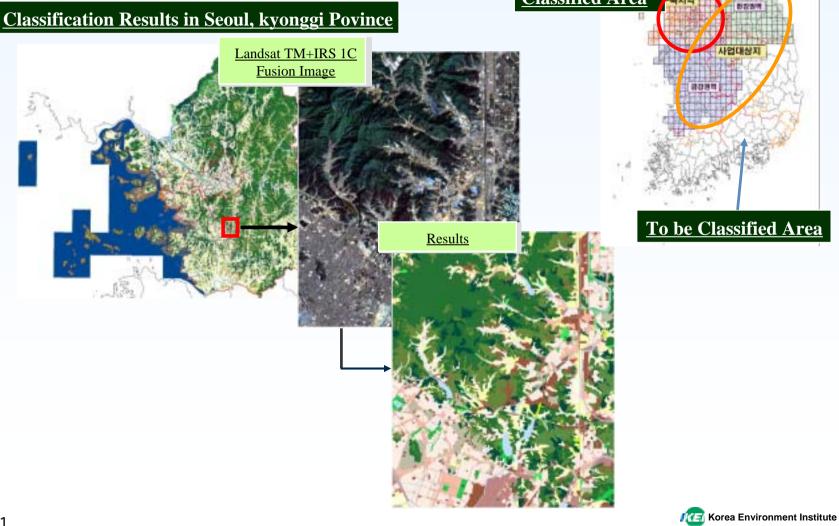
adapta	tion			Areal 1	atio(%)			
patte		CSIRO MK2	CCCma	ECHAM4	HadCM2	CCSR /NIES	mean	area(km ²)
	а	11.13	2.66	4.14	5.12	7.39	6.09	6,076
Canth	b	24.24	32.71	31.23	30.25	27.98	29.28	29,222
South	с	0.49	0.49	0.49	0.49	0.49	0.49	492
korea	d	-	-	-	-	-	-	-
	е	64.14	64.14	64.14	64.14	64.14	64.14	64,010
sun	1	100.00	100.00	100.00	100.00	100.00	100.00	99,800
	а	30.84	9.07	12.85	20.71	23.73	19.44	23,866
Month	b	28.65	50.42	46.64	38.78	35.75	40.05	49,160
North Korea	с	13.08	23.05	23.43	17.99	17.01	18.91	23,216
Korea	d	-	-	-	-	-	-	-
	е	27.44	17.46	17.08	22.52	23.51	21.60	26,520
sun	1	100.00	100.00	100.00	100.00	100.00	100.00	122,762
			Т	otal Area				222,562

< The adaptation result of pine tree in 2100 >

- * There is a big deviation by GCM, but IPCC IS92a scenarios shows that 12-32% of the forest until the year 2100 in Korean peninsula will be in danger.
- In case that the yearly mean movement growth rate of the forest is below than 0.25km per year, it is estimated that there will be a loss of 1.3-3.5billion US\$ annually due to the futility of forest apatation.
- The establishment of the integrated impact assessment is necessary to fully assess the impact of forest and other ecosystem fields. This includes a correspondence plan at national level and continuous establishment of the basic data.

Korea Landuse/cover classification Project

Classification Level


Level III Level I Level II CODE (7 classes) (23 classes) (48 classes) **Detached house areas** 111 112 Residential 110 **Tenement house areas Apartment areas** 113 120 Industrial Industrial areas 121 131 **Commercial areas** Commercial 130 And Mixed com. & services area 132 Services Gas & Oil station 133 **Recreation facilities** 141 Recreation 140 Urban or Gym. & Stadium 142 **Built-up** 100 Airports 151 Land Port areas 152 Transport-150 **Rail networks** 153 ation Road 154 Other transportsion & 155 communication area Environmental 161 **Elementary facilities Electronic plant facilities** 162 Public 160 **Education & Miltary facilities** 163 Other public facilities 164 **Permanently Irrigated land** 211 Rice 210 Land Non-irrigated land 212 Fileds 221 Field 220 Land 222 Agricultural 200 Land Vinyl house 231 Vinyl Hous 230 Orchard 241 240 Orchard 251 **Tree planting areas** Other 250 Agri. Land Pasture lands 252 30

Level I (7 classes)		Level II (23 classes)		Level III (48 classes)	CODE
Forest Land	300	Broad- Leaved forest	310	Natural Broad leaved forest	311
				Planted Broad leaved forest	312
		Coniferous forest	320	Natural coniferous forest	321
				Planted coniferous forest	322
		Mixed	330	Mixed forest	331
Grass Land	400	Natural Grass	410	Natural Grassland	411
		Golf Area	420	Grassland in Golf-course	421
		Other Grass Land	430	Grassland in Cemetery park	431
				Avenue tress	432
				Other	433
Wetland	500	Inland Wetland	510	Inland Wetland	511
		Coastal Wetland	520	Intertidal flats	521
				Salines	522
Barren Land	600	Mining Area	610	Open pit areas of Industrial minerals	611
				Open areas mining of rock	612
				Open pit areas of other minerals	613
		Other Barren	620	Beaches	621
				River bank	622
				Other(construction etc.)	623
Water	700	Inland Water	710	Water courses	711
				Water bodies	712
		Marine Water	720	Sea & Ocean	721

Korea Environment Institute

Korea Landuse/cover classification Project Classification Level II Classified Area

