AIM/Provincial and Inter Provincial Model

Hongwei Yang

The 7th AIM International Workshop 15-17, March 2002

At Ohyama Memorial Hall National Institute for Environmental Studies, Tsukuba, Japan

CONTENTS

- Brief history of AIM energy models with bottomup approaches
- Major extension from AIM-Local-2001 to AIM-Local-2002
- Applications of AIM-Local in the case of China
 - Necessity to go to provincial level
 - Demonstration of Provincial/Inter-provincial studies
 - Estimation of the effects of Clean Development Mechanism at provincial and sectoral levels in China

Brief history of AIM energy models with bottom-up approaches

(1) AIM-Enduse model

Source: AIM home page -- http://www-cger.nies.go.jp/ipcc/aim/

Source: 環境儀 No.2 地球温暖化の影響と対策 アジア太平洋地域における温暖化対 策統合評価モデル- AIM

(2) AIM-Local-2001

Parameters Variables

Constraints

Environmental target

Service demand

Available energy supply

Operating capacity

Maximum shares of technologies

Maximum exchange of stock

Objective Function

Total cost \rightarrow minimum

(3) AIM-Local-2002

Version 2001

Version 2002

Features and Differences of the models

Model	Targeted Region	Calibration in the Base Year	Intermediate Process	Calculation of air pollutants emissions	LPS/AS	Link to GIS
AIM- Enduse	Country	Yes	Yes	Simplified	AS	No
AIM- Local 2001	Sub- country	Yes	No	Detailed	LPS/AS	Yes
AIM- Local 2002	Country Sub- country	Yes + Adjustment	Yes	Detailed	LPS/AS	Yes

CONTENTS

- Brief history of AIM energy models with bottomup approaches
- Major extension from AIM-Local-2001 to AIM-Local-2002
- Applications of AIM-Local in the case of China
 - Necessity to go to provincial level
 - Demonstration of Provincial/Inter-provincial studies
 - Estimation of the effects of Clean Development Mechanism at provincial and sectoral levels in China

K: Energy

(2) Automatic calibration and adjustment: automatically adjust service demand and technology stocks in the base year.

- Comparing energy demand data in the base year with the reported energy balance tables;
- Calculating adjust coefficients for service demand and technology stocks in terms of least calibration errors.

CONTENTS

- Brief history of AIM energy models with bottomup approaches
- Major extension from AIM-Local-2001 to AIM-Local-2002
- Applications of AIM-Local in the case of China
- Necessity to go to provincial level
- Demonstration of Provincial/Inter-provincial studies
- Estimation of the effects of Clean Development Mechanism at provincial and sectoral levels in China

Applications of AIM-Local model in the case of China

1. Necessity to go to provincial level

(1) Regional differences

economic development

Shanghai:34547

Guizhou:2662

energy demand and supply

Example: Electricity supply

Example: coal mines distribution

 (2) Domestic policy needs
"Great West Development" program and energy development

- Electricity transmission from west to east (Yunnan, Guizhou, Guangxi, Guangdong)

 Natural gas pipeline from west to east (Xinjiang, Gansu, Qinghai, Ningxia, Shaanxi, Henan, Anhui, jiansu, Shanghai)

- Economic development and energy consumption is a more provincial-specific issue.
 - * Energy transportation (provincial/inter-provincial) for coal, oil and gas;
 - * Development of renewable energy wind power (Xinjiang, InnerMongolia) geothermal (Tibet) hydro (Hubei, Hunan, Sichuan, Yunnan, Guangxi, Guizhou, Fujian, Guangdong)
 - * Nuclear power (Zhejiang, Guangdong, Jiangsu)

Economic development and environment control is also a more provincial-specific issue.

- * "Two control zones" policy allocates SO₂ emissions into each province.
- * Tax rates for air pollution control varies across provinces;
- * There is a policy need to analyze air pollutants emission trading at provincial level;

(3) From the point of view of global environmental studies, the provincial approach helps

- to have more reasonable estimation for future greenhouse gas emissions in China;
- to carry out concrete policy countermeasures for greenhouse gas emission control and air pollutants emission reduction.

2. Demonstration of Provincial/Inter-Provincial Studies

ð 0 Partia coal. electricity Equilibrium model and transport

Country projections of Population, GDP, Iron/Cement/Paper/Ethy lene/Crops productions, Nuclear/ Hydro/ Renewable supply Energy conversion Power generation (LPS),Oil refinery

Industrial

Iron and Steel (LPS), Cement, Petrochemical, Paper and pulp, Others

Residential Air conditioning, Heating, Cooking, Lighting, Hot water, Others

Commercial Air conditioning, Heating, Cooking, Lighting, Hot Water, Others

Transportation Automobile, Train, Ship ,Air Freight, Passenger

Agriculture Pumping, Heating, Tractor

Macro-trends (projection of provincial level) Provincial ratios of Population, GDP, Iron/Cement/Paper/Ethylene/Crops productions, etc.

Provincial module

year

basic

2

Calibration

Provincial energy balance tables, productivity tables (1) Beijing: all sectors (AIM-Local-2002)(2) Shanxi: all sectors (AIM-Local-2002)

base year: 2000 simulation period: 2000-2030 emissions: CO₂, SO₂, NO₂

Stock allocation module

Energy consumption of thermal power generation

Fuel	Coal	Fuel oil	Natural gas	Regional total (Sum by K)
Region				
Region i ₁				
Region i ₂				
•••	•••	•••	•••	•
Region i _n				
National total (Sum by I)				

Simulation result

	202	VARIABLE	S.L	Provincial	stock (l,i,	j): Thermal	power in GW
		Beij	ing	Tianjin	Hebei	Shanxi	InnerMong~
OILBLR.	POWER	0.	268	0.034	0.076		0.007
COLBLR.	POWER	2.	759	3.786	16.886	12.796	10.051
GASTBN.	POWER			1.418078E-6			
	+	- Liaon	ing	Jilin	Heilongji~	Shanghai	Jiangsu
OILBLR.	POWER	0.	999	0.183	0.178	0.687	0.166
COLBLR.	POWER	11.	393	7.378	9.896	9.642	18.466
GASTBN.	POWER	<u>.</u>		0.014	0.251		
	+	- Zheji	ang	Anhui	Fujian	Jiangxi	Shandong
OILBLR.	POWER	0.	839	0.022	0.219	0.091	1.084
COLBLR.	POWER	9.	603	6.667	3.327	3.044	16.913
GASTBN.	POWER						0.017
	+	He	nan	Hubei	Hunan	Guangdong	Guangxi
OILBLR.	POWER	0.	019	0.037	0.021	5.775	0.023
COLBLR.	POWER	14.	187	5.765	3.729	12.429	2.426
GASTBN.	POWER					0.037	
	+	Hai	nan	Chongqing	Sichuan	Guizhou	Yunnan
OILBLR.	POWER	0.	800	0.014	0.031	0.009	
COLBLR.	POWER	0.	485	2.206	6.204	4.557	4.035
GASTBN.	POWER	0.	105	0.051	0.217		
	+	· Ti	bet	Shaanxi	Gansu	Qinghai	Ningxia
OILBLR.	POWER	3.959023	E-5	0.030	0.033		
COLBLR.	POWER			5.548	3.327	0.682	1.916
	+	Xinji	ang				
OTLBLR	POWER	0	023				

COLBLR.POWER 3.249 GASTBN.POWER 0.478

(3) Inter-provincial module

- Coal transportation from Shanxi to Beijing

Railway: Datong-Qinhuangdao Baotou-Beijing

Num Tak I

Ratio of Beijing/Shanxi for energy, CO₂ and SO₂

3. Estimation of the effects of Clean Development Mechanism at provincial and sectoral levels in China

Provincial level: (Beijing study) CDM fund used as subsidies to technologies can help to reduce the marginal costs of Gas turbine and IGCC. 28

Projection of future emissions from iron and steel industry with/without CDM

Shares of the accumulated production by technologies under different scenarios (%) Period: 2000-2030

Scenario	Open-	Oxygen	AC	DC	Heat	DIOS	Total
	hearth		Electric	Electric	Recovery		
Market	0.4	81.3	18.3	0.0	0.0	0.0	100
CDM1	0.4	73.7	19.4	1.4	5.2	0.0	100
CDM2	0.4	58.2	24.5	11.0	5.9	0.0	100
Min	0.4	42.6	24.3	30.7	2.1	0.0	100
CO ₂							

Present technologies in China

Advanced technologies from Japan

Reasonable scale of CDM opportunities for Japan's technologies in China's iron and steel industry

Possible application areas of AIM-Local model?

Specific needs and requirements to the model?