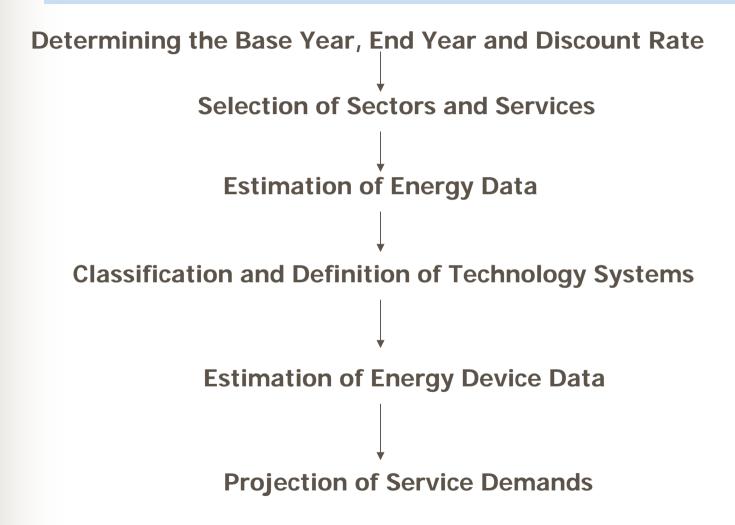
THE ESTIMATION OF CARBON DIOXIDE (CO₂) EMISSIONS FROM THE TRANSPORT SECTOR IN MALAYSIA (2000 – 2020)

Researchers: Azman Zainal Abidin (ASMA) Haslina Mansor (ASMA) Radin Diana R. Ahmad (PTM) Ramdzani Abdullah (UPM) Irene Chung (UPM)

ASIA-PACIFIC INTEGRATED MODEL


- Large scale computer simulation model developed at Japan's National Institute for Environmental Studies
- Its main goal: To assess policy options for stabilizing global climate, particularly in the Asia-Pacific region, from the perspectives of reducing GHG emissions and avoiding the impacts of climate change

The study looks at

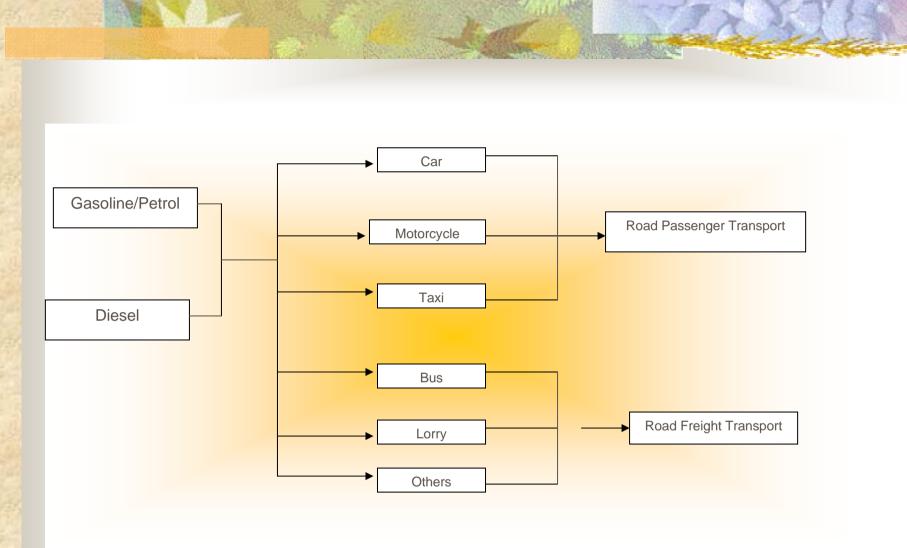
Energy consumption patterns, and
 projections from 2000 to 2020,

for the Transport sector (road users) in Malaysia

STEPS TAKEN IN PREPARATION OF DATABASE

Base year chosen: 2000 End year chosen: 2020 Discount rate: 10%

5 types of services were chosen comprising exclusively road transportation


Sector and Final Service	Service Unit
Transportation-Passengers	
Car Motorcycle Taxi Bus	1000 person. kilometer (p.km) 1000 person. kilometer (p.km) 1000 person. kilometre (p.km) 1000 person. kilometre (p.km)
Transportation-Freight	
Lorry	1000 person. kilometre (p.km)

Energy Prices in AIM-Malaysia

Product	Unit	Value
Natural gas – Power plant	RM/mmbtu	6.40
LPG	RM/kg	1.28
MOGAS – 97RON*	RM/liter	1.20
MOGAS – 92 RON*	RM/liter	1.16
Diesel – Transport*	RM/liter	0.701
Diesel - Industry	RM/liter	0.50 ~ 0.70
Diesel – Power Generation	RM/liter	0.30 ~ 0.60
Kerosene	RM/liter	0.65 ~ 0.70
Fuel Oil	RM/ liter	0.57 ~ 0.70
Coal	RM/tonne	~ 130
Jet fuel	RM/liter	0.70 ~ 0.90
Naphtha	RM/liter	0. 50 ~ 0.60
NGV*	RM/liter	0.60

Emission Factors in AIM-Malaysia

Energy Name	CO ₂ Emission Factor (kg-CO ₂ /GJ)
Natural gas	55.82
LNG	62.44
Crude oil	72.6
Others	73.33
Aviation gas	73.33
LPG	62.44
Motor Petrol	68.61
ATF	71.15
Kerosene	71.15
Diesel oil	73.33
Fuel oil	21.1
Refinery gas	73.33
Coal & Coke	99.83

Technology System in Road Transport Sector

An example of estimating Energy Device Data in the Transport Sector in AIM-Malaysia

	Passenger vehicle (Car)	Freight vehicle (Lorry)
Data from published sources A. Average km-travel per year (10 ³ km/yr) B. Stock number C. Total energy consumption (1000 t) D. Fuel efficiency (km/kg) E. Price (Fixed Cost) F. NO _x emission (kg NO ₂ /km)	19.32 4,145,982 5058 15.84 US\$ 19,737 10.3	48.3 665,284 6672.8 10.43 US\$ 23,684 52
Estimation used in AIM-Malaysia G. Average number of persons H. Specific Energy Input (GJ/yr/d.u.) I. Specific Service Output (s.u./yr/d.u.)	2 53.75 38.64	2 196.79 96.6

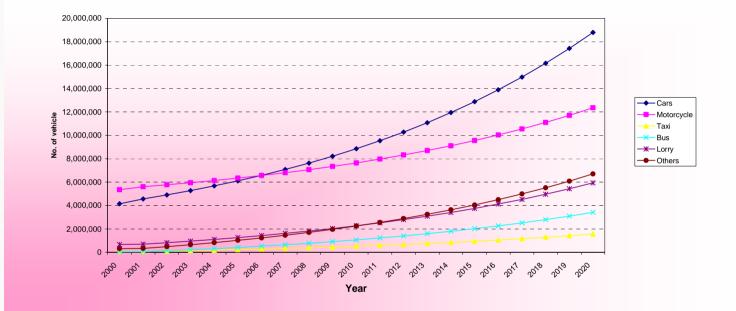
H: A*D* Calorific Value*Conversion Factor

B: Department of Transport, Malaysia I: A*G/1000

Service Demand in Transport Sector

Projection of transportation = annual percentage increase of vehicle population = 8%

$$SRVo = NVo * x$$

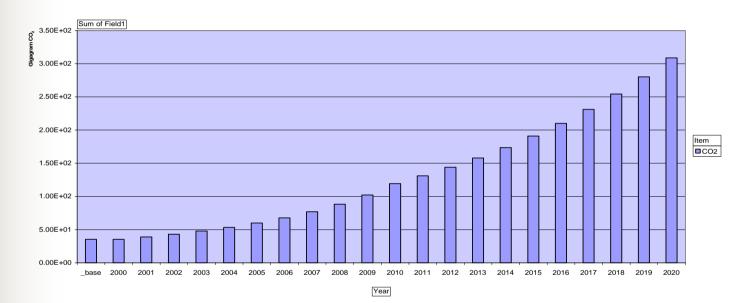

where, SRVo = Service demand in time period NVo = Number of vehicles in time period x = Average km travel per year (10³ km/yr)

Breakdown in Vehicle Population

- Passenger cars: 38%
- Motorcycles: 18%
- **Taxis: 4%**
- Buses: 9%
- Lorries: 14%
- Others: 17%
- Overall yearly increase: 8%

Projected Vehicle Population in Malaysia (2000 - 2020)

	Cars	Motorcycle	Taxi	Bus	Lorry	Other	Total
2000	4,145,982	5,356,604	66,585	48,662	665,284	315,687	10,598,804
2001	4,557,992	5,609,351	66,565	49,771	689,668	329,198	11,302,545
2002	4,901,590	5,772,108	102,733	131,149	816,257	482,913	12,206,750
2003	5,272,675	5,947,885	141,795	219,038	952,972	648,925	13,183,290
2004	5,673,447	6,137,724	183,981	313,957	1,100,625	828,218	14,237,952
2005	6,106,280	6,342,751	229,543	416,471	1,260,090	1,021,854	15,376,989
2006	6,573,741	6,564,179	278,749	527,185	1,432,312	1,230,981	16,607,147
2007	7,078,598	6,803,322	331,892	646,756	1,618,312	1,456,838	17,935,718
2008	7,623,844	7,061,597	389,286	775,894	1,819,193	1,700,764	19,370,578
2009	8,212,710	7,340,533	451,272	915,362	2,036,143	1,964,204	20,920,224
2010	8,848,648	7,641,784	518,217	1,065,987	2,270,449	2,248,719	22,593,841
2011	9,535,537	7,967,135	590,517	1,228,663	2,523,500	2,555,995	24,401,347
2012	10,277,338	8,318,514	668,601	1,404,353	2,796,795	2,887,853	26,353,455
2013	11,078,483	8,698,004	752,932	1,594,098	3,091,954	3,246,260	28,461,731
2014	11,943,720	9,107,853	844,010	1,799,023	3,410,726	3,633,340	30,738,670
2015	12,878,176	9,550,490	942,374	2,020,342	3,754,999	4,051,386	33,197,764
2016	13,887,388	10,028,538	1,048,607	2,259,366	4,126,814	4,502,876	35,853,585
2017	14,977,337	10,544,830	1,163,338	2,517,512	4,528,374	4,990,484	38,721,872
2018	16,154,482	11,102,425	1,287,249	2,796,310	4,962,059	5,517,103	41,819,622
2019	17,425,799	11,704,628	1,421,072	3,097,411	5,430,439	6,085,850	45,165,192
2020	18,798,821	12,355,007	1,565,601	3,422,600	5,936,289	6,700,097	48,778,407

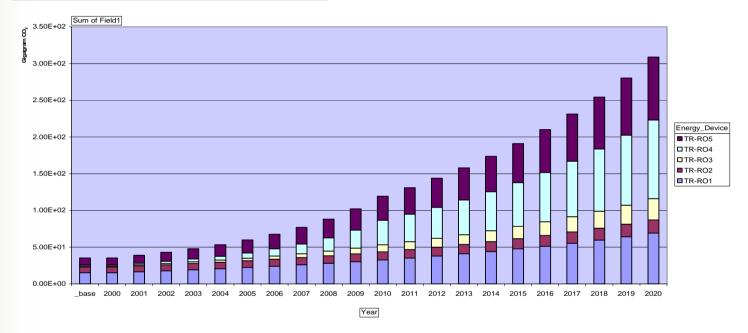


Projected Vehicle Population in Malaysia (2000-2020)

Total CO₂ Emissions from the Transport Sector in Malaysia (2000-2020) – Business-as-Usual (BAU)

Year	CO ₂ Emission (Gram)	
_base	35,393,972,428	
2000	35,393,972,428	
2001	38,962,396,048	
2002	43,062,233,003	
2003	47,809,166,681	
2004	53,351,598,750	
2005	59,881,222,427	
2006	67,647,220,989	
2007	76,975,367,476	
2008	88,293,756,256	
2009	102,167,514,785	
2010	119,345,683,321	
2011	130,990,378,607	
2012	143,836,023,763	
2013 158,011,615,893		
2014 173,660,430,375		
2015 190,941,637,264		
2016 210,032,103,842		
2017	231,128,405,055	
2018	254,449,066,105	
2019	280,237,064,364	
2020	308,762,620,952	
Grand Total	2,850,333,450,812	

LPS_Area (All) LPS (All) Region MYS Removal NON Kind EMS Sector TR-ROA Energy_Device (All)



Total CO₂ Emissions from the Transport Sector in Malaysia (2000-2020) - Business-as-Usual (BAU)

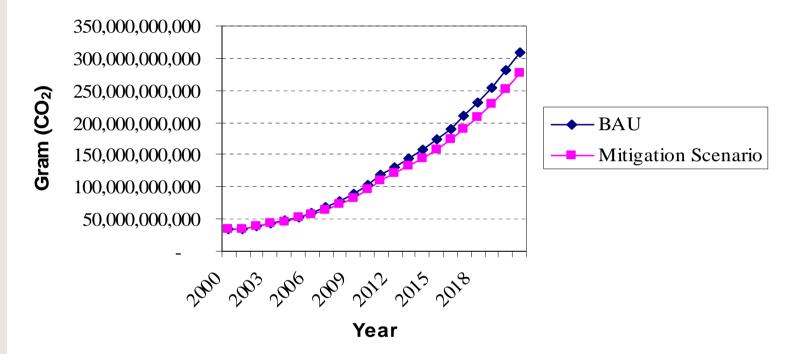
CO2

Projected CO₂ Emissions by Vehicle Type in Malaysia (2000-2020) (gram) – Business-as-Usual (BAU)

LPS_Area (All) LPS (All) Region MYS Removal NON Kind EMS Sector TR-ROA Item CO2

Projected CO₂ Emissions by Vehicle Type in Malaysia (2000-2020) – Business-as-Usual (BAU)

Mitigation Measures


Fuel Switching – natural gas (cars and taxis)
 biodiesel (lorries and buses)

Apply to 50% of vehicle population by 2005, and 100% by 2020

- Public transport
- Non-motorised transport
- No mitigation option for motorcycles

Total CO₂ Emissions from the Transport Sector (BAU vs. Mitigation Scenario)

Year	BAU	Mitigation Scenario
_base	35,393,972,428	35,393,972,428
2000	35,393,972,428	35,393,972,428
2001	38,962,396,048	38,840,074,566
2002	43,062,233,003	42,790,331,857
2003	47,809,166,681	47,354,299,406
2004	53,351,598,750	52,672,511,686
2005	59,881,222,427	58,926,456,184
2006	67,647,220,989	66,136,065,340
2007	76,975,367,476	74,766,126,381
2008	88,293,756,256	85,203,565,677
2009	102,167,514,785	97,957,981,272
2010	119,345,683,321	113,703,005,985
2011	130,990,378,607	121,028,235,057
2012	143,836,023,763	132,421,482,853
2013	158,011,615,893	144,956,127,040
2014	173,660,430,375	158,751,908,754
2015	190,941,637,264	173,941,553,352
2016	210,032,103,842	190,672,211,752
2017	231,128,405,055	209,107,064,452
2018	254,449,066,105	229,427,106,803
2019	280,237,064,364	251,833,136,257
2020	308,762,620,952	276,547,964,704
Grand Total	2,850,333,450,812	2,622,453,046,362

Total CO₂ Emissions from the Transport Sector (BAU vs. Mitigation Scenario)

CO₂ Emissions (gigagrams)

	2000	2020
BAU	35	309
MITIGATION SCENARIO	35	277

CONCLUSION

- Corresponding decrease is moderate (32 gigagrams)
- Technological approach alone is insufficient
- Has to be complemented with nontechnological approaches
- Drastic decrease in vehicle population ideal solution?