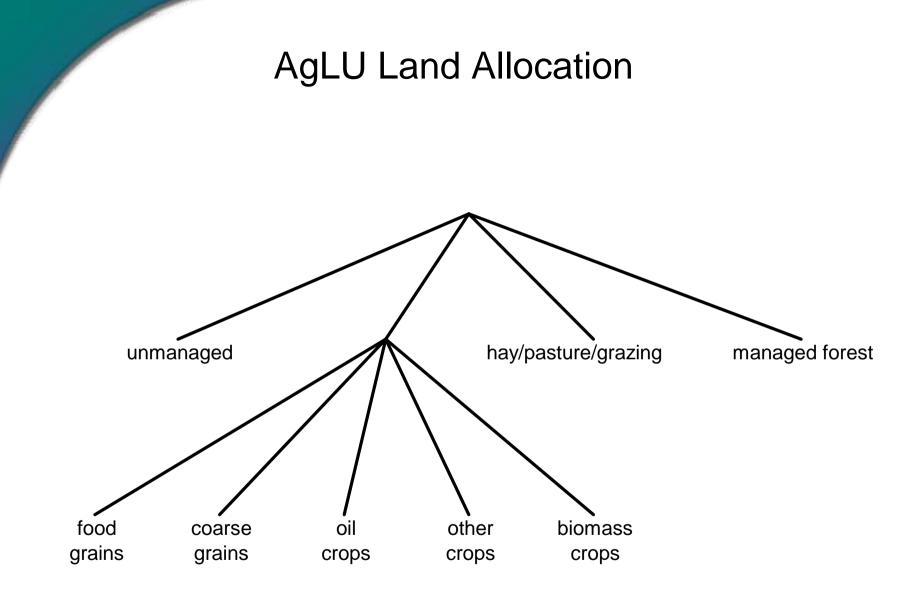
Economic Analysis of Field Crops and Land Use with Climate Change

Ron Sands Joint Global Change Research Institute Battelle – PNNL – University of Maryland

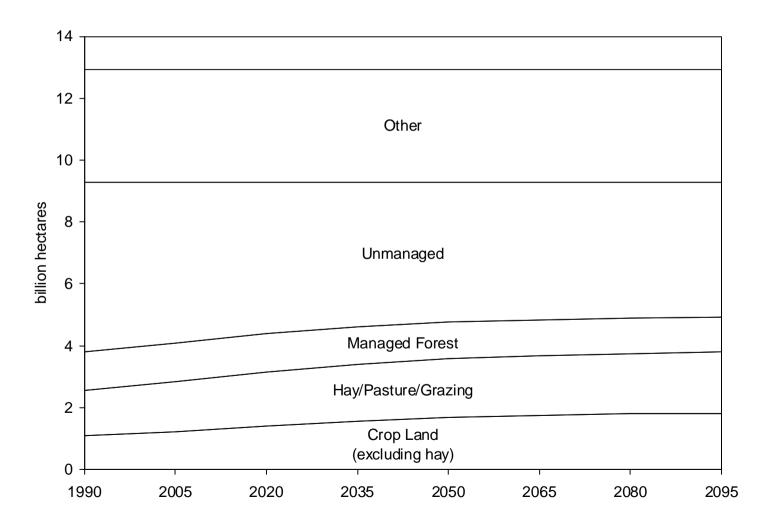
> 9th AIM International Workshop Tsukuba, Japan 12-13 March 2004

Introduction

- Explore link between climate impacts analysis and economic models.
- Summarize results from biophysical models and use them to change productivity parameters in an economic model.
- Economic model provides a baseline of agricultural production and consumption over one century.
- We use a partial equilibrium model of global agriculture and land use (AgLU model), but ultimately we want this capability in a computable general equilibrium model.
- What can we say about production, consumption, land use, and economic welfare (consumer and producer surplus) with climate change?

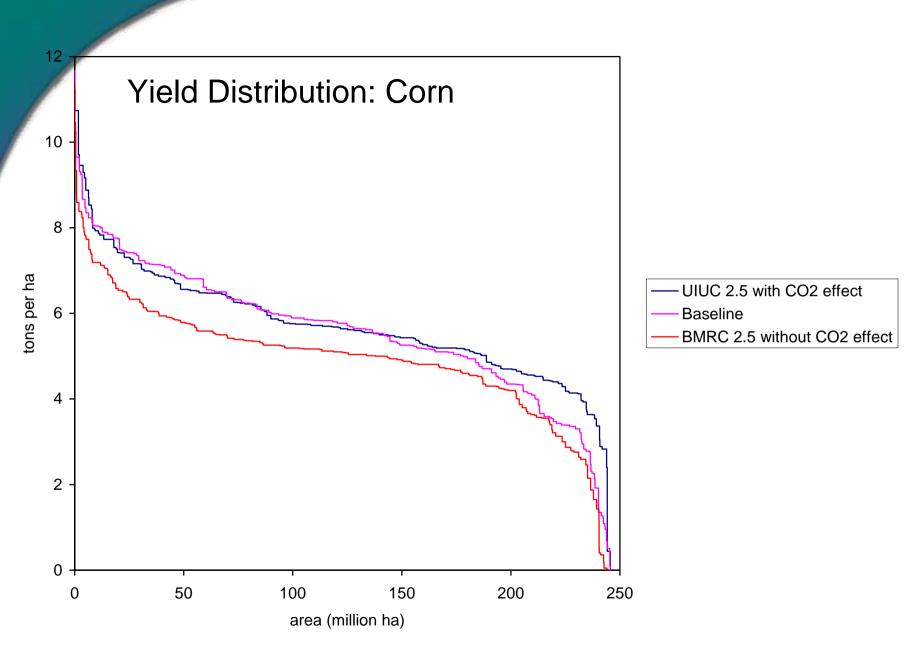

Approach

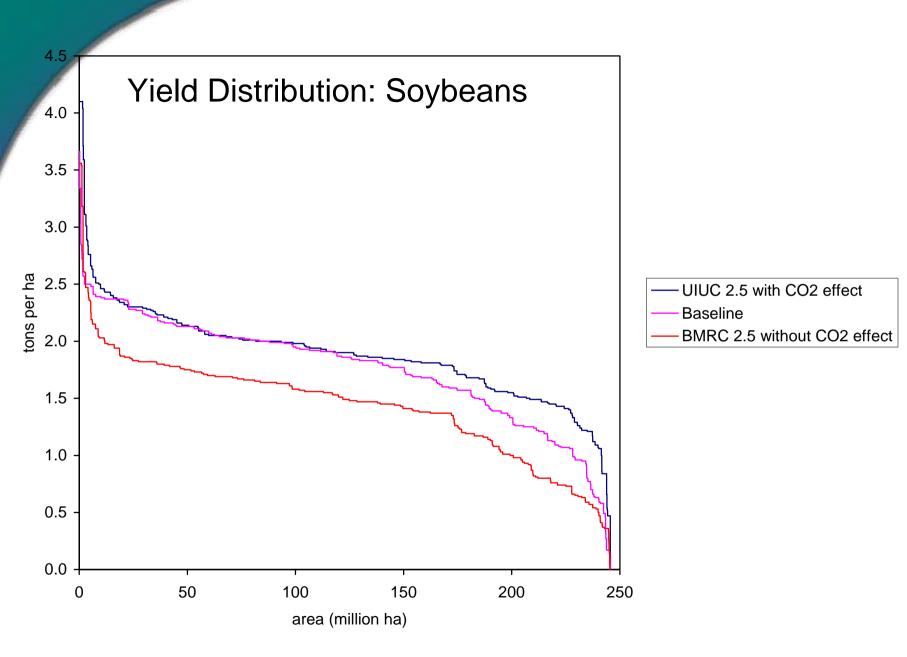
- Select climate scenarios (3 climate models x 2 climate sensitivities x 2 levels of CO₂ fertilization).
- Run crop growth simulation model (EPIC) at 204 sites in U.S. for major field crops for each climate scenario.
- Run hydrology model (HUMUS) for 204 hydrologic unit areas (river basins).
- Run BIOME3 model to simulate climate impacts on forests.
- For each crop, aggregate yield change to national index using agricultural area as weights.
- Apply change in yield to economic production function in AgLU model. Compare to baseline in year 2080.
- Assumptions on change in yield in other countries
 - No change in yield outside U.S.
 - Global yield changes at same rate as in U.S.
- Summarize changes in land use, crop production, and consumer/producer welfare.

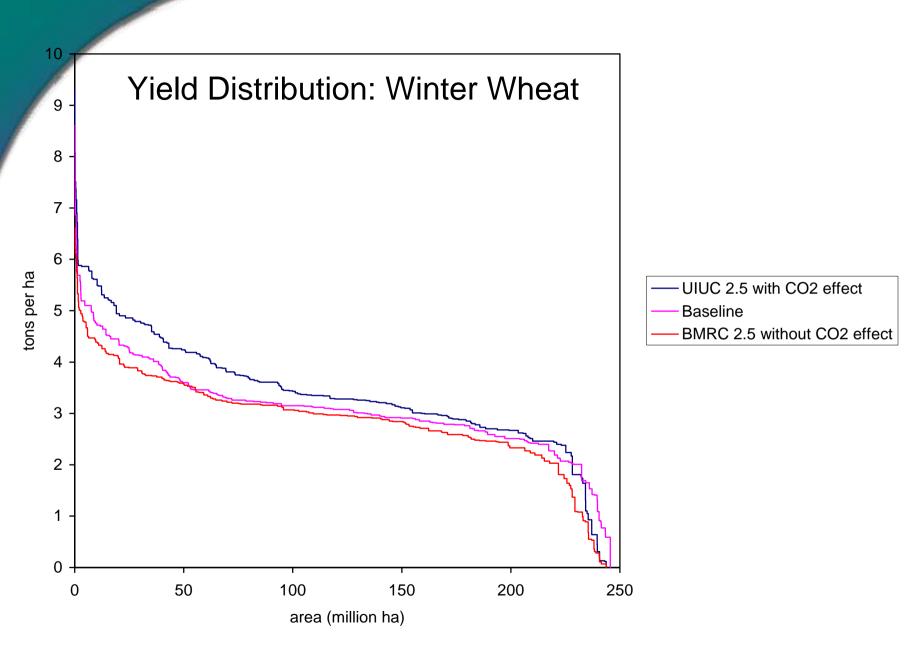


Agriculture and Land Use Model

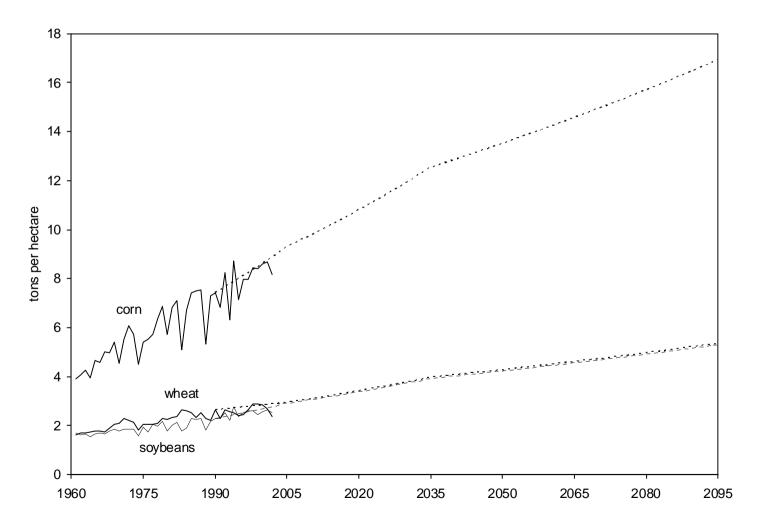
- ➢ First version completed in 1996
- Design
 - Top down
 - Partial equilibrium
 - 14 world regions
 - 15-year time steps from 1990 through 2095
- Land Allocation
 - Land owners compare economic returns across crops, biomass, pasture, and future trees
 - Underlying probability distribution of yields per hectare
- Forest Dynamics
 - Trees in AgLU grow for 45 years
 - Two forest markets (current and future) needed for model stability
- Studies
 - Role of biomass in carbon policy
 - Impact of ENSO on North America
 - U.S. climate impacts


Baseline Global Land Use




Simulated EPIC Yield with Restricted Irrigation (tons per hectare)

Scenario	Corn	Soybeans	Winter Wheat
Baseline	5.61	1.77	3.11
without CO ₂ effect			
BMRC 1.0	5.49	1.67	3.02
BMRC 2.5	4.95	1.44	2.90
UIUC 1.0	5.57	1.74	3.02
UIUC 2.5	5.35	1.61	2.88
UIUC 1.0 + sulfates	5.54	1.73	3.00
UIUC 2.5 + sulfates	5.30	1.60	2.84
with CO ₂ effect			
BMRC 1.0	5.92	1.99	3.58
BMRC 2.5	5.43	1.71	3.45
UIUC 1.0	6.02	2.05	3.58
UIUC 2.5	5.75	1.89	3.40
UIUC 1.0 + sulfates	5.99	2.04	3.56
UIUC 2.5 + sulfates	5.71	1.88	3.35



Historical Crop Yields in the United States (solid lines) and Future Projections

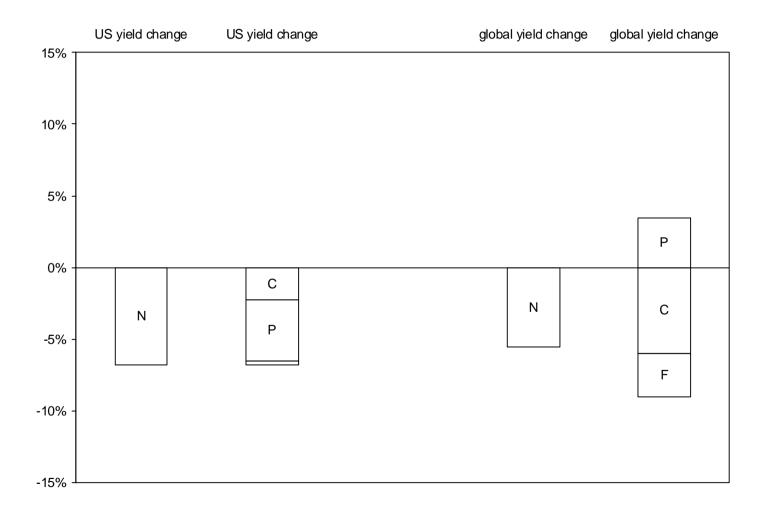
Yield Patterns Relative to Baseline

		BMRC 2.5 °C	UIUC 2.5 °C	UIUC 2.5 °C
AgLU sector	Biophysical model	no CO ₂ effect	no CO ₂ effect	with CO ₂ effect
Food grains	EPIC winter wheat	-6.8%	-7.6%	10.8%
Coarse grains	EPIC corn	-11.7%	-4.6%	2.5%
Oil crops	EPIC soybeans	-18.7%	-8.9%	6.9%
Miscellaneous crops	none			
Pasture	EPIC hay	-16.1%	-7.0%	7.7%
Forests	BIOME3	-85.3%	-1.4%	42.9%
Commercial biomass	EPIC hay	-16.1%	-7.0%	7.7%

Economic Welfare

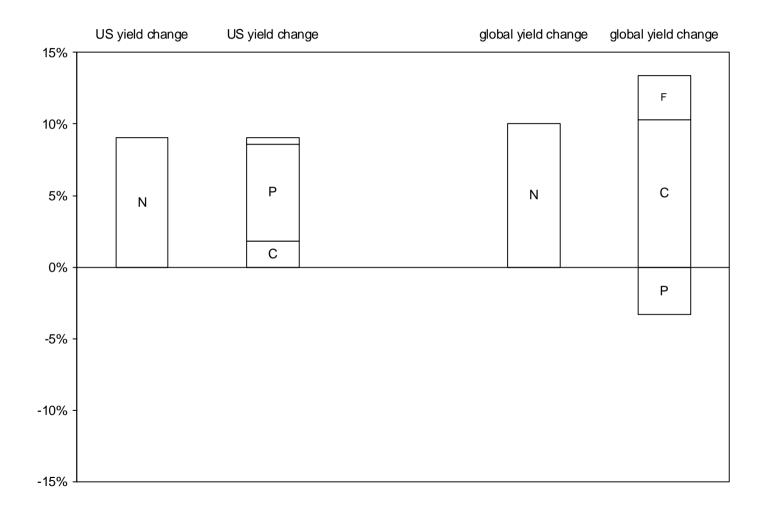
Net output

- Essentially GDP from the agricultural and forestry sector.
- Quantity index of output less the fraction used as inputs to other agricultural activities (e.g., crops used as animal feed).
- Can be calculated in a partial equilibrium framework by placing agricultural and forestry sector in an input-output framework.
- Change in net output
 - Measure of change in total welfare
 - Difference between net output in baseline and climate scenario
 - Can be partitioned into components for producers and consumers.



Changes in U.S. Consumption and Net Output Relative to Baseline in 2080

	change in	change in	components of change in net output		
Scenario	consumption	net output	consumer	producer	trade
without CO ₂ effect					
BMRC 2.5	-1.0%	-16.6%	-4.3%	-12.1%	-0.2%
UIUC 2.5	-0.4%	-6.8%	-2.3%	-4.2%	-0.3%
UIUC 2.5 + sulfates	-0.5%	-7.3%	-2.5%	-4.5%	-0.3%
with CO ₂ effect					
BMRC 2.5	0.0%	-2.5%	0.4%	-3.2%	0.3%
UIUC 2.5	0.4%	9.0%	1.8%	6.8%	0.4%
UIUC 2.5 + sulfates	0.4%	8.0%	1.9%	5.8%	0.2%



Change in U.S. Net Output (N) UIUC (2.5 °C) *without* CO₂ Effect

Change in U.S. Net Output (N) UIUC (2.5 °C) *with* CO₂ Effect

United States Summary by Sensitivity Scenario

		Total U.S	U.S. Land	
	Simulation	Production	Land Use	Rent
Scenario	Year	(Pcal)	(million ha)	(1990 = 100)
Baseline	1990	1,143	99.0	100
				100
Baseline	2080	2,770	157.8	123
Change in U.S. yields				
UIUC 2.5 without CO2 effect	2080	2,645	151.8	120
UIUC 2.5 with CO2 effect	2080	2,717	143.0	137
U.S. yield change applied globally				
UIUC 2.5 without CO2 effect	2080	2,942	178.4	125
UIUC 2.5 with CO2 effect	2080	2,605	144.8	119
	2000	2,000	144.0	115

Conclusions

Uncertainties

- Climate scenarios
- CO₂ fertilization effect
- Crop productivity growth in baseline
- Climate impacts in other countries
- ➤ Welfare
 - Net output is a quantity index that combines effects of yield change across crops.
 - Change in net output represents overall change in welfare; it can be decomposed into changes in consumer and producer welfare.
 - Consumer welfare generally moves in same direction as net output.
 - Producer welfare is tied to the price of land; it can move in either direction depending on what happens to crop yield in other countries.

