Local Air Quality Modeling, AIM/Air

The 9th AIM International Workshop 12-14, March 2004, at NIES

Graduate School of Global Environmental Studies Kyoto University Takeshi Fujiwara

Outline of AIM/Air

- + AIM/Air is a program package to calculate the pollutant concentration based on plume and puff diffusion models.
- + Area source (AS) and Large Point Source (LPS) can be dealt with. The emission data from "AIM/Local" are directly available by using converter "A-GIS".
- + Target size is from city to country.
- + AIM/Air has friendly user interface and runs on both PC's Windows and Linux.

Characteristics of AIM/Air

- + Properties of emission, such as amount per year, gas temperature, and gas flow, are definable by each LPS or cell of AS.
- + Emission profile is definable. Not only change of emission in a day, in a week and in year but also special terms (such as holiday and off-time in equipment maintenance) are considered.
- + Standard meteorological data (ECMWF) is available. Use of the meteorological data locally measured is effective to increase accuracy of diffusion analysis.
- + An effective algorithm to reduce computational time is adopted.

Model Equations

Plume model (Wind velocity >= 1 m/s)

$$C(x, y, z) = \frac{Q_p}{2\pi\sigma_y\sigma_z u} \cdot \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \cdot \left[\exp\left\{-\frac{(z-He)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{(z+He)^2}{2\sigma_z^2}\right\}\right]$$

Puff model (Wind velocity < 1 m/s)

$$C(x, y, z) = \frac{Q_p}{(\sqrt{2\pi})^3 \gamma} \cdot \exp\left(-\frac{u^2}{2\alpha^2}\right) \cdot \left[\frac{1}{\eta_-^2} \left\{ 1 + \frac{\sqrt{2\pi}ux}{\alpha\eta_-} \cdot \exp\left(\frac{u^2 x^2}{2\alpha^2 \eta_-^2}\right) \cdot erfc\left(-\frac{ux}{\sqrt{2}\alpha\eta_-}\right) \right\} + \frac{1}{\eta_+^2} \left\{ 1 + \frac{\sqrt{2\pi}ux}{\alpha\eta_+} \cdot \exp\left(\frac{u^2 x^2}{2\alpha^2 \eta_+^2}\right) \cdot erfc\left(-\frac{ux}{\sqrt{2}\alpha\eta_+}\right) \right\} \right\}$$

$$\eta_{-}^{2} = R^{2} + \frac{\alpha^{2}}{\gamma^{2}} (z - He)^{2} \qquad \eta_{+}^{2} = R^{2} + \frac{\alpha^{2}}{\gamma^{2}} (z + He)^{2} \qquad erfc(W) = \frac{2}{\sqrt{\pi}} \int_{W}^{\infty} \exp(-t^{2}) dt$$

Emission Pattern Editor

Emission Condition	Emission Condition
Emission Hourly Daily Monthly Special	Emission Hourly Daily Monthly Special
Emission Condition Emission Condition Emission Condition (Monthly) Correspondence in a year Changing by month Veight Jan 0 Feb 0 Mar 0 Apl 0 Jun 0 Jun 0 Jun 0 Jun 0 Dec 0	Emission Hourly Daily Monthly Special Emission Condition Emission Hourly Daily Monthly Special Holidays and Shutdown Term No special cars Following Change in Special terms 3 4 Add Ins Del Clear Patt WDay [From Day] [To Day] Month Day Month Day Pat Wday Ratio 1 2 3 4 4 5 6 6 7 8 9 10 10 10 10 10 10 10 10 10 10

AS Emission Editor

LPS Emission Editor

Application

AIM/Air was applied to assess health impact of SO₂ in Beijing.

Air Quality Level in China

The 1st level: Nature protection zone, scenic zone. Day-averaged SO₂ concentration: 50 μ g/m³

The 2nd level : Residential area, the area mixed with commercial, transportation and residential area, cultural area , usual industrial area, and agricultural area

Day-averaged SO₂ concentration : 150 µ g/m³

The 3^{rd} level : Specified industrial area. Dayaveraged SO₂ concentration : 250 μ g/m³

Pollution Level of cities in China

Because of drastic development of economics in China to identify the health impact caused by SO_2 is significantly important.

In 343 cities researched in China,

The number of cities where SO_2 concentration is above the standard value of the 3rd level air quality: 107 cities(31.2%)

Above the 2nd level and below the 3rd level : 120cities(35.0%)

If the 2nd air quality level is achieved 178,000 of death will be avoided (World Bank)

Target Area

Beijing(China) 1,600km²

Carget time extent:

an 1, ~ Dec. 31, 2000 Target pollutant: SO₂

O Measurement points

- 1 Che Gong Zhuang
- 2 Qian Men
- 3 Dong Si
- 4 The Temple of Hea
- 5 Olympic Center
- 6 Agricultural Museum

Emission Source (AIM/Local)						
AS(Area Source)						
LPS(Large Point Source)						
 Cement sector Steel and iron sector Non-ferrous metal sector Power generation sector 	GDP by secondary industry section in each district Population density in each 30 seconds mesh					
 Commerce sector Transportation sector Public sector Other sector 	GDP by third industry section in each district Population density in each 30 seconds mesh.					

Change in day

Industry and commerce sectors

Constant during 9:00 ~ 19:00

Zero during 19:00 ~ 8:00

Industry sector: constant during Mon. to Fri. and zero on Sat. and Sun.

Emission Pattern (2)

Change in year

Commerce and public sectors (frequent use of heater)

	Emis	ssion .	from h	heater
Emis	ssion	from	every	equipment
=39%	⁄₀(pu	blic se	ector)	

=89% (commercial sector)

Special terms

	新年	: Jan. 1	1
--	----	----------	---

	Month	Emission rat	te by sector		
		Commerce	Public		
	Jan.	0.447	0.243		
	Feb.	0.169	0.121		
	Mar.	0.066	0.076		
	Apr.	0.011	0.052		
	Мау	0.009	0.051		
	Jun.	0.009	0.051		
	Jul.	0.009	0.051		
	Aug.	0.009	0.051		
	Sep.	0.009	0.051		
	Oct.	0.013	0.052		
	Nov.	0.071	0.078		
	Dec.	0.178	0.125		

国慶祭: Sep. 29 ~ Oct. 3.

Health Impact Assessment

The relationship between SO₂ concentration averaged in 48 hrs and daily mortality

Daily Mortality =
$$\begin{bmatrix} y_0 \\ y_0 \end{bmatrix} \cdot \left(\exp\left(-\frac{\beta}{SO_2}\right) - 1 \right) \end{bmatrix} \cdot pop$$

- y_0 : rate of death caused by any events except accident
 - : SO₂ coefficient

 SO_2 : The difference between projected SO_2 concentration which is averaged in 48 hrs and the regulation value of the 2nd grade standard.

Using the daily mortality how many death can be avoided if the concentration is regulated under the standard value of the 2nd level air quality is calculated.

Result from diffusion simulation

Result from diffusion simulation (2)

Contribution of the day-averaged SO₂ concentration by sector at a cite of high population density

Result from Diffusion Simulation (3)

Histogram of day-averaged SO₂ concentration

Result from Diffusion Simulation (4)

The number of days which day-averaged SO_2 concentration is above the standard value of the 2nd level air quality

# of days						Month						
above standard	Jan.	Feb.	Mar.	Apl.	May	Jun.	Jul.	Aug.	Sep.	Oct.	Nov.	Dec.
0	86.09	97.09	99.25	99.84	99.78	99.81	99.75	99.91	99.69	99.75	99.37	99.5
1	8.054	1.88	0.501	0.063	0.157	0.063	0.157	0.031	0.219	0.157	0.439	0.345
2	3.322	0.282	0.094	0	0	0.031	0	0.031	0.031	0.031	0.031	0.031
3	0.721	0.188	0	0.031	0	0.063	0	0	0	0	0	0.031
4	0.407	0.157	0	0	0.031	0.031	0.031	0.031	0.031	0	0	0
5	0.501	0.125	0	0	0.031	0	0.031	0	0	0	0.063	0.031
6	0.094	0.031	0.094	0.031	0	0	0.031	0	0.031	0	0	0
7	0.094	0.031	0.031	0	0	0	0	0	0	0.031	0.031	0.031
8	0.251	0.063	0	0	0	0	0	0	0	0.031	0	0
9	0.125	0	0	0	0	0	0	0	0	0	0	0
10	0.063	0.031	0	0.031	0	0	0	0	0	0	0.031	0
11	0.031	0	0	0	0	0	0	0	0	0	0	0.031
12	0.063	0	0	0	0	0	0	0	0	0	0	0
13	0.031	0.063	0.031	0	0	0	0	0	0	0	0	0
14	0	0	0	0	0	0	0	0	0	0	0.031	0
15	0.031	0.031	0	0	0	0	0	0	0	0	0	0
17	0.031	0	0	0	0	0	0	0	0	0	0	0
18	0.031	0.031	0	0	0	0	0	0	0	0	0	0
21	0.031	0	0	0	0	0	0	0	0	0	0	0
29	0.031	0	0	0	0	0	0	0	0	0	0	0

The maximum number of days which is above the 2^{nd} standard is 104 days.

Result from Impact assessment

The total number of avoidable death in the target area and the maximum number of the avoidable death in whole cells, by month

Month	Total	The maximum in cells
Jan.	587.14	206.78
Feb.	22.09	11.17
Mar.	3.57	2.09
Apr.	0.72	0.72
May	0.39	0.39
Jun.	0.79	0.41
Jul.	2.28	1.38
Aug.	0.31	0.31
Sep.	1.15	0.73
Oct.	0.82	0.82
Nov.	6.6	6.02
Dec.	1.79	1.77

If SO₂ concentration in Beijing is regulated under the standard value of the 2nd grade of air quality in China, the total number of avoidable death in year 2000 is approximately 626.9

Unit ' norgon's douth

Conclusion

- Air quality modeling and simulation tool AIM/Air was developed.
- By using this tool concentration of air pollutant can be calculated from the information of emission source that is resulted from AIM/Local.
- Proposed algorithm for quick calculation and user interface enables to run diffusion calculation both on PC's Windows and Linux.
- This tool was applied to project air quality of Beijing. Moreover, daily mortality was assessed.

