Effects of Carbon Tax on Energy System Development and

Environment:

Cases of Indonesia and Thailand

Ram M Shrestha
Migara H. Liyanage
Sunil Malla
and
Charles O.P. Marpaung

Asian Institute of Technology Thailand

19-21 February 2006

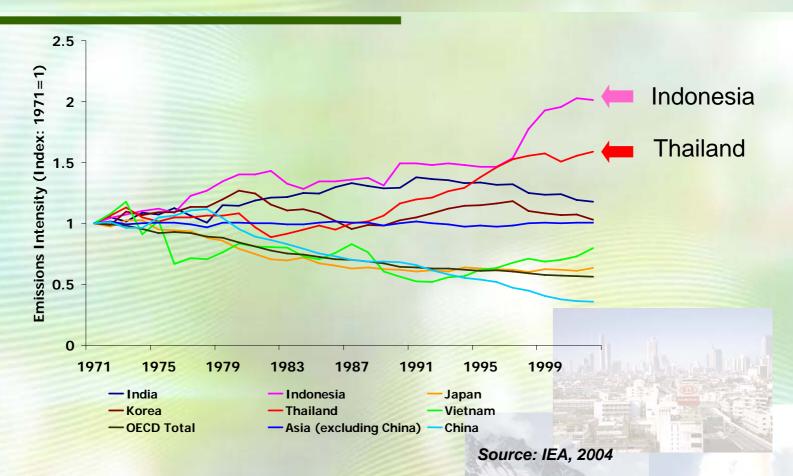
11th AIM International Workshop Tsukuba, Japan

Presentation outline

- Introduction
- Primary Energy Supply & Emissions
- Effect of C-tax on Energy Supply & Emissions
- Changes in other Indicators

I. AIM Related Activities during 2005/06

AIM Related Activities during 2005/06


- Updating AIM/ Enduse model of Thailand
 - Extension of the planning horizon to 2050
 - Revision of the transport sector (included new technologies)
 - Revised emission factors (IPCC revised guidelines and RAINSASIA)
 - Modifications on the methodology to forecast service demand
 - Revision of fuel prices
 - Efficiency improvement of devices
- Multi-gas emissions inventory of Thailand
 - Type of gases: CO₂, NO_x, N₂O, CH₄ & CO.
 - Source and sink categories: energy use, fugitive emissions, industrial processes, agriculture and waste.
 - Planning horizon: 2000–2035.

AIM Related Activities during 2005/06

- AIM/ Air: Bangkok
 - Data collection (on going)
 - Development of the node-link matrix for Bangkok city
 - Estimation of emissions from each line source
- AIM/ Enduse Cambodia & Nepal:
 - Data collection (ongoing)
- AIM/ Enduse Indonesia:
 - Updating energy devices data
 - Revisions to fuel prices
 - Revised emission factors (IPCC revised guidelines and RAINSASIA)
 - Modifications on the methodology to forecast service demand
 - Analysis of carbon tax scenarios

CO₂ Intensity (CO₂ per GDP_{MER})

 CO₂ intensity has been increasing in the past three decades in Indonesia and Thailand.

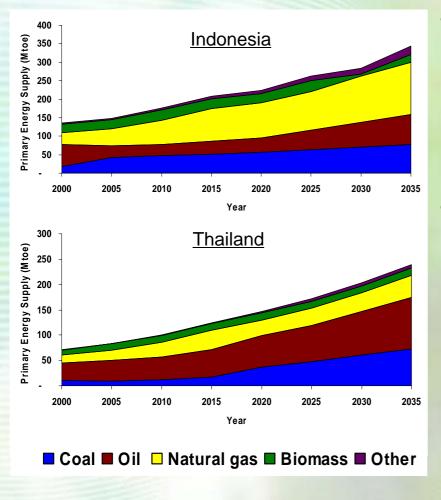
Economy, energy use and CO₂ emissions in Thailand, Indonesia and selected countries of the world (2002)

Indicators	Thailand	Philippines	Indonesia	OECD	World
Population (million)	62	80	212	1145	6195
GDP/capita (constant 1995 US\$)	3,000	1,209	1,060	24834	5701
TPES/capita (kgoe)	1,344	526	736	4668	1675
CO ₂ emissions (million tons)	179	70	303	12,554	24,101
CO ₂ intensity (kg CO ₂ per 1995 US\$)	0.97	0.72	1.35	0.44	0.68
Net energy import (% of commercial energy use)*	47	53	-54	-	-

^{*} Data for 2001

Source: WDI (2004) and IEA (2004)

In Thailand,


- GDP/capita and TPES/capita is higher compared to Indonesia but lower compared to industrialized nations.
- CO₂ emissions and CO₂ intensity is lower compared to Indonesia but higher compared to industrialized nations.

Introduction

- Study period:
 - 2000 to 2035
- Scenarios considered:
 - Base Case
 - Carbon Tax: US \$ 10, 30, 50, 100 & 200 /tC
 (CT10, CT30, CT50, CT100 & CT200)
- Tax is considered from 2013 onwards.

Total Primary Energy Supply (TPES)

Base case

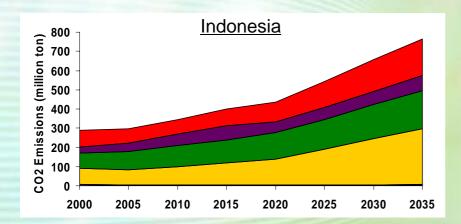
TPES:

From 2000 to 2035,

Indonesia: 135 to 343 Mtoe (2.5 times) **AAGR: 2.9%**

Thailand: 71 to 239 Mtoe (3.5 times) AAGR: 3.5%

Changes in fuel shares: (From 2000 to 2035)

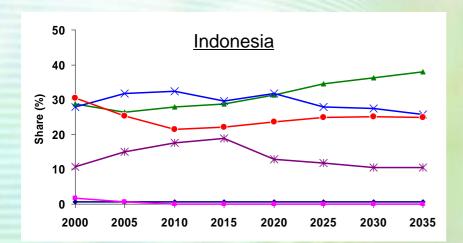

muonesia.	
➢ Oil	45 to 24%
Coal	13 to 23%
Natural gas	23 to 41%
Biomass	17 to 6%
Thailand:	

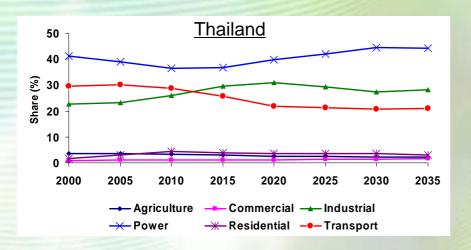
Indonocia:

>	Oil	49 to 43%
>	Coal	14 to 30%
>	Natural gas	22 to 19%
>	Biomass	14 to 6%

Total CO₂ Emissions

Base case


Indonesia:


- > 288 million ton (2000)
- > 763 million ton (2035) (< 3 times)
- AAGR during 2000-2035: 2.8%

Thailand:

- > 161 million ton (2000)
- > 641 million ton (2035) (4 times)
- AAGR during 2000-2035: 3.9%

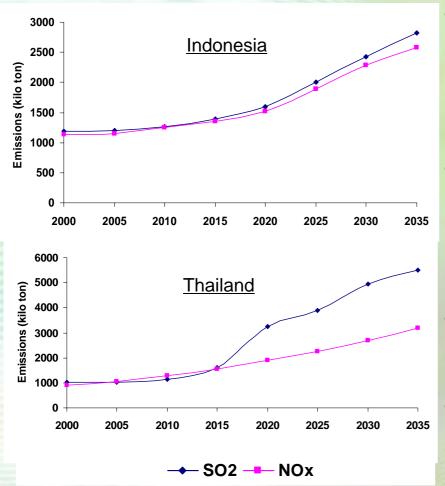
Sectoral Shares in Total CO₂ Emissions Base case

Indonesia:

Sectoral shares from 2000 to 2035:

Power:
 Transport:
 Industrial:
 28 to 26%
 30 to 25%
 29 to 38%

 Industry becomes largest and power becomes second largest in 2035


Thailand:

Sectoral shares from 2000 to 2035:

➢ Power:
 ➢ Transport:
 ➢ Industrial:
 ☐ 41 to 44%
 ☐ 30 to 21%
 ☐ 23 to 28%

 Power sector becomes largest and Industry becomes second largest in 2035

SO₂ & NO_x Emissions Base case

SO₂ emissions :

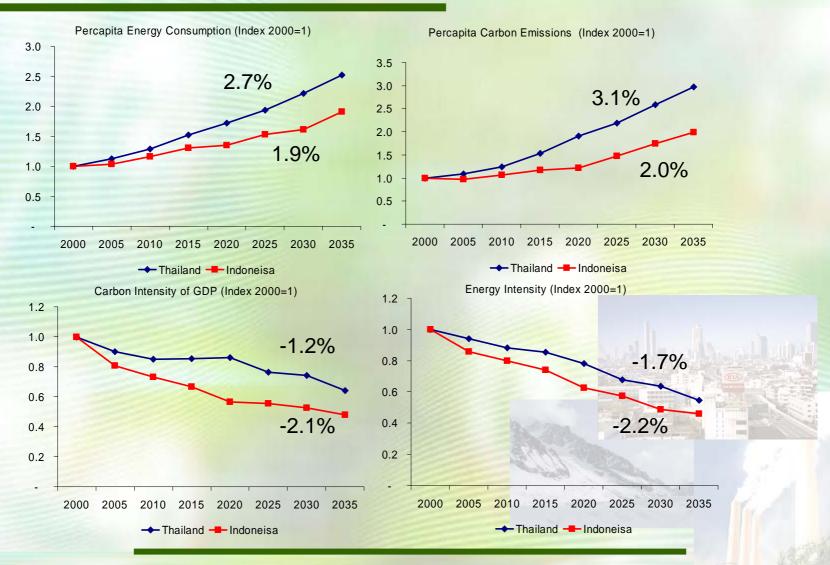
From 2000 to 2035 (AAGR),

Indonesia: 2.6%

Thailand: 4.9%

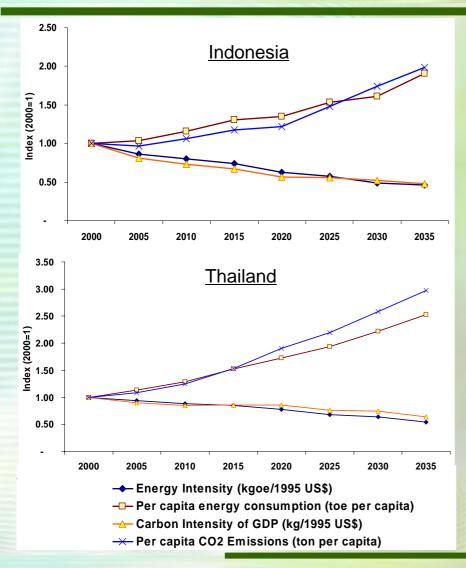
NO_X emissions:

From 2000 to 2035 (AAGR),


➤ Indonesia: 2.5%

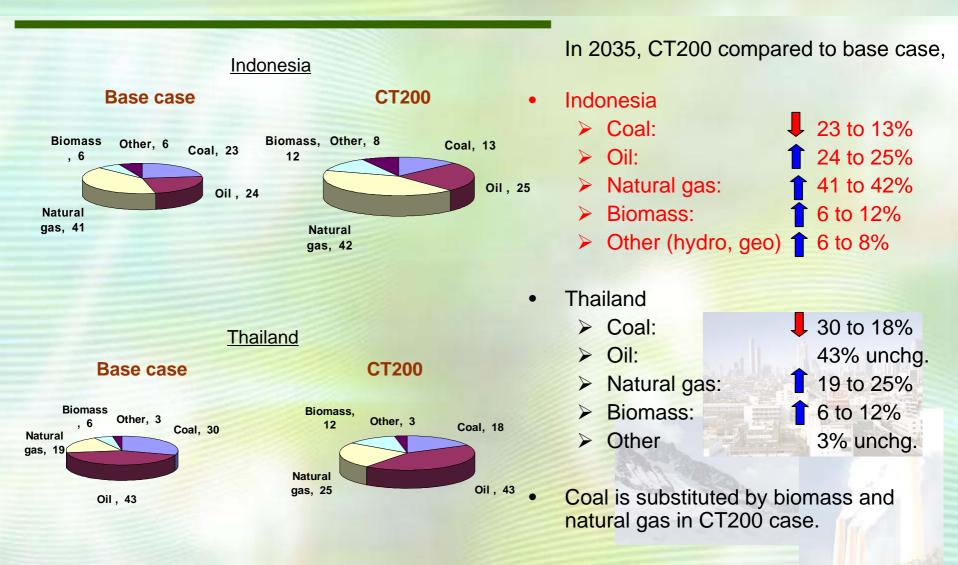
> Thailand: 3.7%

- Thailand has higher AAGR of SO2 & NOx emissions during 2000-2035.
- In Thailand large increase in SO₂ emissions because of increase in coal use.

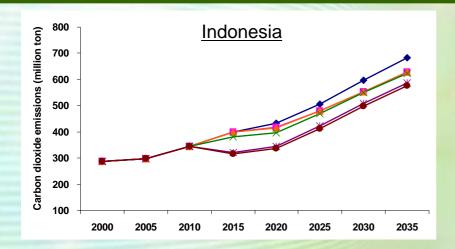

Selected Indicators

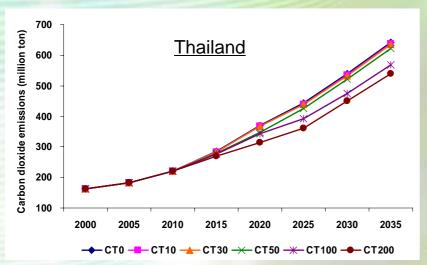
Base case

11th AIM International Workshop Tsukuba, Japan


Other Indicators

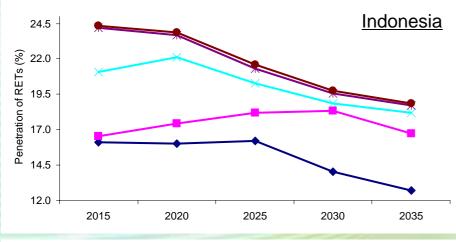
From 2000-2035,

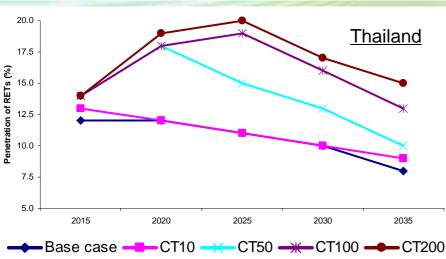

- Per capita CO2 Emissions (ton):
 - Indonesia: 1.36 to 2.71
 - > Thailand: 2.63 to 7.82
- Energy Intensity of GDP at MER (kgoe/1995 US\$):
 - > Indonesia: 0.65 0.30
 - > Thailand: 0.59 to 0.32
- Carbon Intensity of GDP at MER (kg/1995 US\$):
 - Indonesia: 1.38 to 0.66
 - > Thailand: 1.34 to 0.86
- Carbon Intensity of Energy (ton/toe):
 - Indonesia: 2.14 to 2.22
 - > Thailand: 2.28 to 2.69


Total Primary Energy Supply Carbon Tax Case

11th AIM International Workshop Tsukuba, Japan

Reduction in CO₂ Emissions Carbon Tax Case




 Reduction of CO₂ compared to base case in 2035 (%),

	Indonesia	Thailand	
CT50	10	3	
CT100	16	11	
CT200	19	16	

Share of Renewable Energy Technologies

Carbon Tax Case

Indonesia:

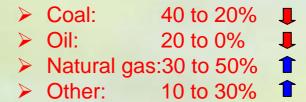
RETs Share in 2035:

Base case: 13%Under CT200: 19%

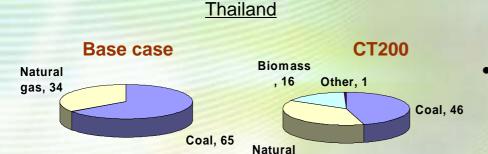
 At CT200, RETs selected are biomass and geothermal.

Thailand:

- RETs Share in 2035:
 - Base case: 8%
 - Under CT200: 15%
- Decline in % RETs in base case because of the limitation in agricultural residue availability.
- At CT200, biomass for power generation and biofuels for transport are selected.


Energy Mix in Power Generation

Carbon Tax Case


In 2035, CT200 compared to base case,

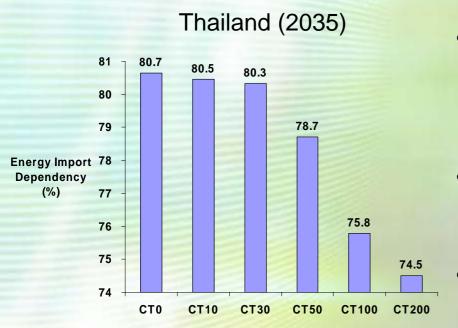
Indonesia

Other technologies are biomass, geothermal & nuclear

Coal and oil is substituted by natural gas, biomass, geothermal and nuclear.

gas, 37

Thailand


Coal: 65 to 46%

Natural gas:34 to 37%

Biomass: 0 to 17%

Coal is substituted by biomass and natural gas.

Energy Import Dependency (EID) Carbon Tax Case

• EID:

Base case: 80.7%

CT200: 74.5%

- Reduction in EID due to increased use of biomass for power generation.
- Total plantation biomass potential (15 Mtoe) is used at CT200.

Conclusions

- Carbon tax could reduce CO₂ emissions up to 19% in Indonesia and 16% in Thailand by 2035.
- Carbon tax results in increasing the share of RETs in both countries
 - ▶ Indonesia 13% in base case to 19% in CT200 in 2035
 - > Thailand 8% in base case to 15% in CT200 in 2035
- RETs selected in Carbon tax cases:
 - Indonesia biomass & geothermal
 - Thailand biomass, wind & biofuel
- Carbon tax reduce EID in Thailand by 81% in base case to 74% in CT200 by 2035.

