
The 11th AIM International Workshop 19-21, February 2006 Ohyama Memorial Hall NIES, Tsukuba, Japan

Development of AIM/Enduse in world regions

Tatsuya HANAOKA

Mikiko KAINUMA Yuzuru MATSUOKA Junichi FUJINO Go HIBINO Maho MIYASHITA Osamu AKASHI

Overview of AIM family

Feature of AIM/Enduse[Global]

Regional scale: 21 global regional aggregations but, improve detail data in a national level

Temporal scale: 2000 (Base year) – 2020 (Target year)

Gas classifications: CO₂, CH₄, N₂O, HFC, PFC, SF₆, (CFC, HCFC) but plan to consider SO₂, NOx, PM, BC/OC

Sector classifications: Multiple sectors

Sector coverage

Sector classifications:

- Power generation sector
- Industry sector
- Residential sector
- Commercial sector
- Transport sector
- Agriculture sector
- CH₄ & N₂O emissions
- F-gas emissions
- Energy supply & price

- : Hibino
- : Hibino
- : Miyashita
- : Miyashita
- : Akashi
- : Pandy \rightarrow Hanaoka
- : Nair \rightarrow Hanaoka
- : Hanaoka
- : Fujino

Geographical coverage

Region	Code	
Region1) Japan2) China3) India4) Indonesia5) Korea6) Thailand7) Other South-east Asia8) Other South-east Asia9) Middle East10) Australia11) New Zealand12) Canada13) USA14) EU-15 in Western Europe15) EU-10 in Eastern Europe16) Russia17) Argentine18) Brazil19) Other Latin America20) Africa21) Rest of the World	Code JPN CHN IND IDN KOR THA XSE XSA XME AUS NZL CAN USA XE15 XE10 RUS ARG BRZ XLM XAF XRW	Asia regions in detail

Preliminary Results

Results presented at *Informal Experts Meeting on Modeling Activities dealing with Climate Change* organized by Ministry of Foreign Affairs, in September 2004

We focused on:

to estimate marginal abatement costs and evaluate GHG mitigation potentials in world regions in 2020.

- **Region-wise** mitigation potentials and costs
- Sector-wise mitigation potentials and costs

Outline of simulation

- Target Year: 2020
- Discount rate:
 - (1) 5% (private & public)
 - (2) 33%(private), 10% (public)
- Simulation cases
 - Reference case (technology-frozen case)
 - i.e.) the case under existing technology options with the same technical and economic characteristics as in 2000
 - Advanced technologies case
 - i.e.) the market selections of realistic advanced technologies

Reduction potentials and abatement costs

Reduction potentials in 2020

Mt-CO2

	Discount rate	5%			33%(Private), 10%(Public)		
Marginal abatement cost 2000US\$		< 0	< 100	< 300	< 0	< 100	< 300
CO2	Steel	395	571	642	338	486	546
	Other manufacture	1,045	1,850	1,855	196	1,195	1,898
	Indutry total	1,440	2,421	2,496	533	1,682	2,444
	Residential	210	330	351	22	110	281
	Commercial	307	474	483	56	275	373
	Transportation	1,298	1,826	2,481	448	542	1,233
	Agriculture	0	0	0	0	0	0
	Others	0	0	0	0	0	0
	Power generation	3,026	3,366	3,526	3,010	3,082	3,463
	Total	6,282	8,417	9,337	4,069	5,690	7,795
CH4	Agriculture	0	42	330	0	32	152
	Energy	797	2,005	2,005	478	2,001	2,005
	Total	797	2,048	2,335	478	2,033	2,158
N2O		-	-	-	-	-	-
HFCs,P	PFCs,SF6 (4%)	84	796	859	-		
Total		7,163	11,260	12,531	4,548	4,548 7,723 9,953	
						in thay	oar 2020

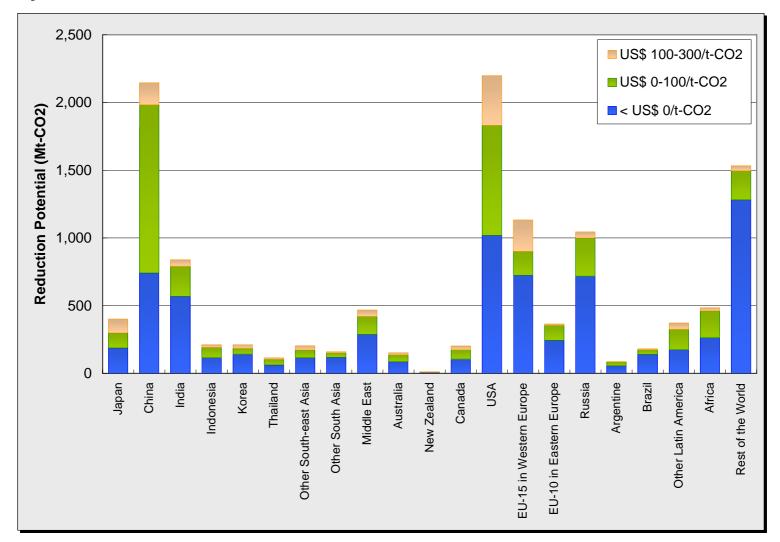
in the year 2020

Regional Breakdown: Reduction potentials

in the year 2020 Discount rate = 5%Developed Developed HFCs, PFCs, SF6 HFCs, PFCs, SF6 Developing Developing /Transition Agriculture -/Transition Agriculture -CH4 CH4 Energy industry Energy industry - CH4 - CH4 Energy industry Energy industry - CO2 - CO2 Transportation -Transportation -CO₂ CO₂ **Residential & Residential &** Commecial -Commecial -CO₂ CO2Manufacture -Manufacture -CO2 CO2 0 1.000 2.000 3.000 1.000 2.000 3.000 0 CO2 Reduction (Mt-CO2eq) CO2 Reduction (Mt-CO2eq)

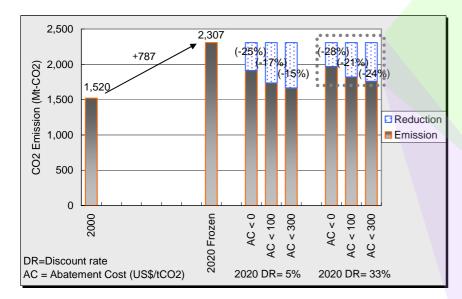
< US\$ 0, 2020

2.1 Gt-CO2 and 5.0 Gt-CO2 (Developed and Developing/Transition)

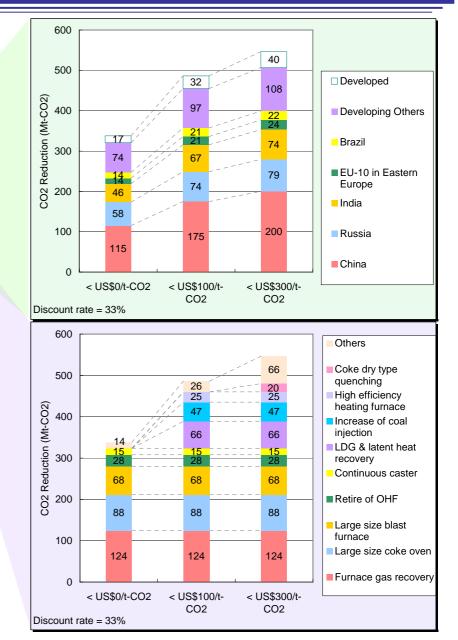

< US\$ 100, 2020

3.4 Gt-CO2 and 7.9 Gt-CO2 (Developed and Developing/Transition)

Reduction potentials in 21 regions


in the year 2020

Discount rate = 5%

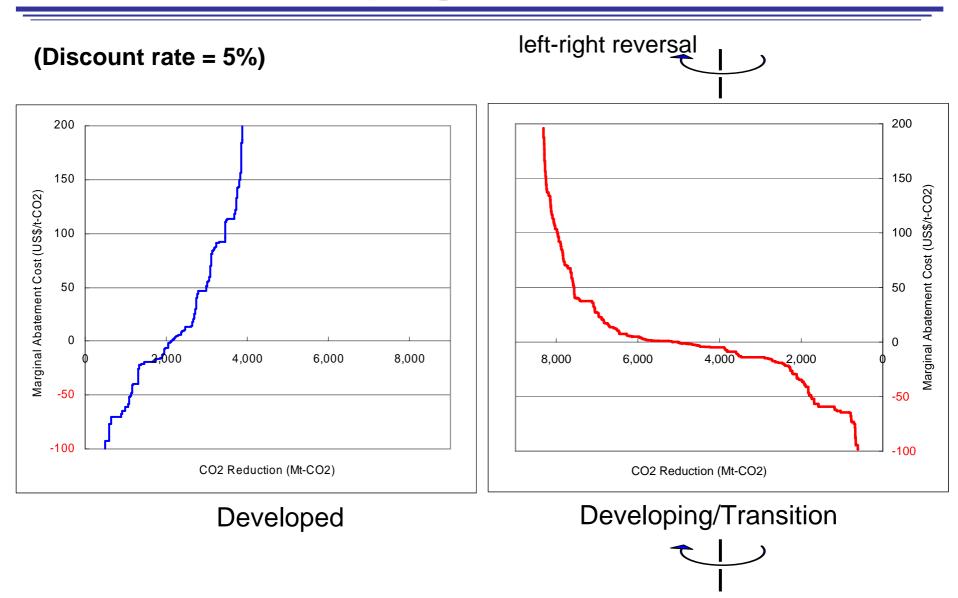


Reduction potentials in steel sector

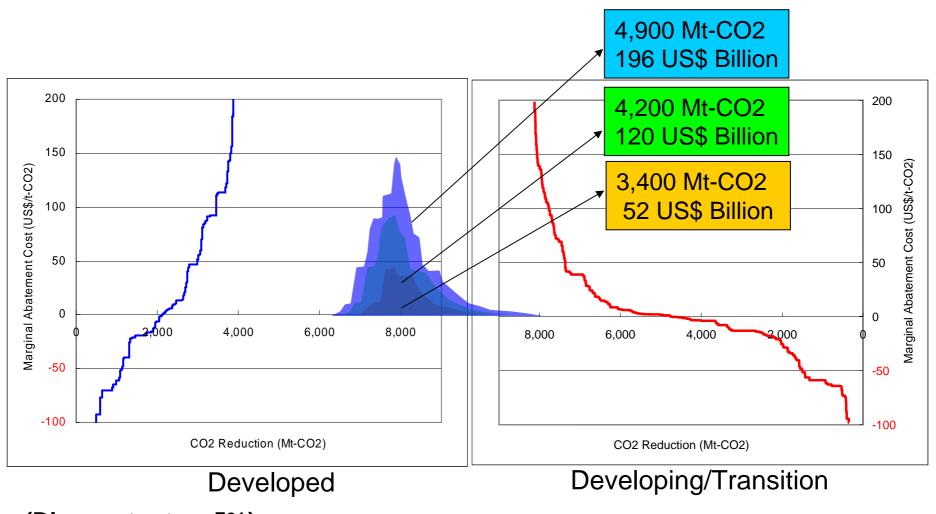
Steel production contributes to the largest CO2 emissions share in industry sector

Discount	Abatement Cost	CO2 Reduction		
Rate	US\$/tCO2	Mt-CO2	vs frozen	
33%	less than 0	338	15%	
	less than 100 48		21%	
	less than 300	546	24%	
5% less than 0		395	17%	
	less than 100	571	25%	
	less than 300	642	28%	

Technology with large reduction potentials


under 100 US\$ marginal abatement costs in 2020

Developed	(MtCO2)	Developing/Transition	(MtCO2)
High efficiency gasoline engine (VVLT, GDI etc)	632	Existing type of power plant (coal ,gas)	2,462
Existing type of power plant (coal ,gas)	546	Use of instrument air, low bleed pneumatic devices*	676
Inverter control for motor	216	Gas high efficiency industrial furnace	449
Fluorescent of incandescent type	143	Inverter control for motor	431
Domestic refrigeration: recovery	129	Coal bed methane ventilation oxidizer for heat**	232


* Recovery of CH4 leakage from natural gas pipeline and well ** Recovery of CH4 in coal mine

(Discount rate = 5%)

Marginal abatement cost of developed and developing countries in 2020

Marginal abatement cost of developed and developing/transition economies

(Discount rate = 5%)

Preliminary Findings: How much reduction could be possible?

✓ Global reduction potential in 2020:

4.5 - 7.2 Gt-CO2eq in no-regret case

<u>7.7 - 11.3 Gt-CO2eq</u> under 100 US\$/t-CO2 marginal costs if we move into action and take countermeasures now.

 Regional reduction potential in 2020 (5% discount rate) : in no-regret case:

2.1 Gt-CO2eq and 5.0 Gt-CO2eq

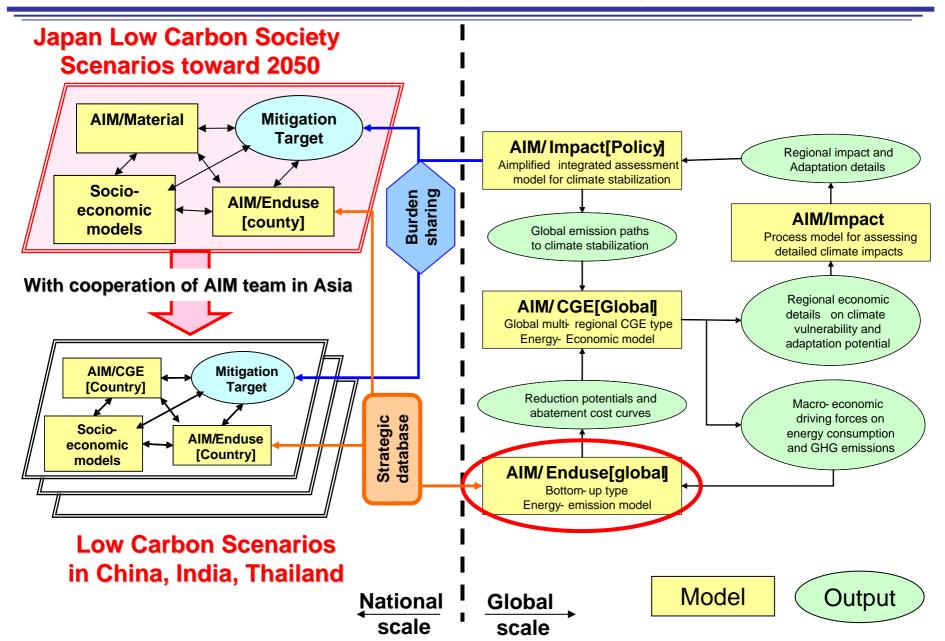
under 100 US\$/t-CO2 marginal abatement costs:

<u>3.4 Gt-CO2eq</u> and <u>7.9 Gt-CO2eq</u>

in developed countries and developing/transition economies, respectively

It is essential to set up frameworks considering transfers of technologies and financial aid to the developing regions.

Remaining issues


1. Update of database such as new advanced technologies, grass-roots countermeasures.

This analysis was based on realistic technologies with current cost estimates. Therefore, it may be possible to reduce more if new advanced technologies become available in the future.

 Future scenarios and determination of service demands of enduse services in each sector.
Hard-linkage among sector models

We have been developing database and considering more appropriate methods how to determine service demands in each sector.

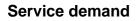
Current Major Projects

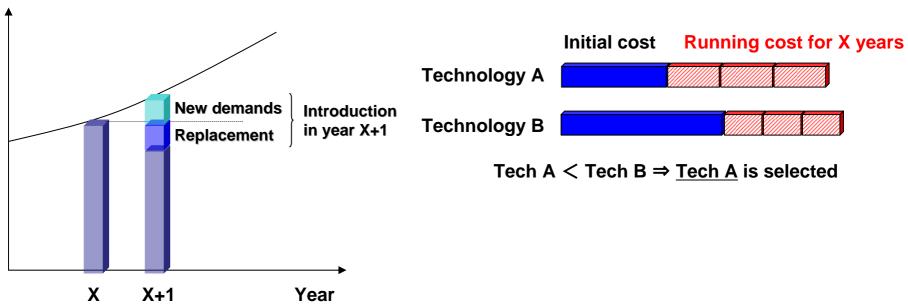
Further Cooperation among AIM team

In the near future, we appreciate cooperation:

- Update of Strategic Database
- Data of dwelling types in Residential sector
- Data of person trip in transport sector
- Data of BC

and so on,

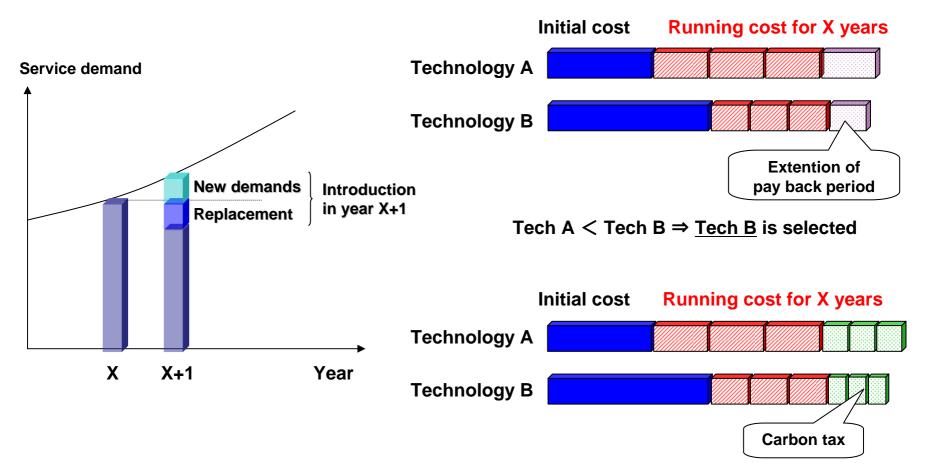

and so on,


and so on...

Thank you very much for your cooperation!

その他予備資料

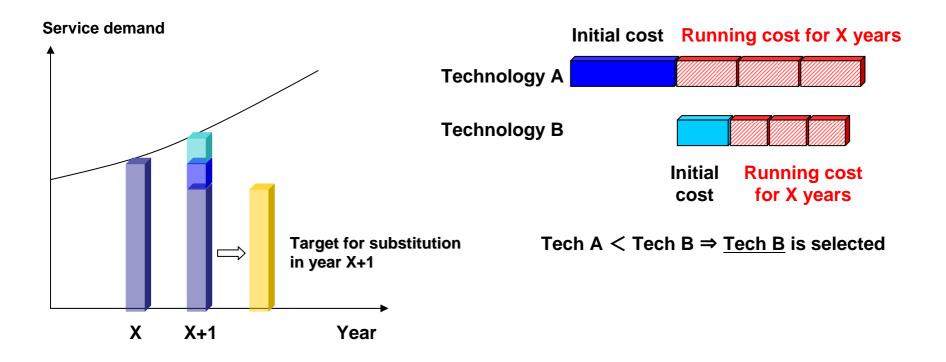
Logic of technology selection



As private industries take into account high investment risk for energy conserving technologies, <u>a payback period of 3-years</u> is usually assumed. e.g.)

the discount rate corresponding to 3-years payback is about 33% based on the assumption of 30 years lifetime for steel plants.

Logic of technology selection


(1) Replacement, new demands

Tech A < Tech B \Rightarrow <u>Tech B</u> is selected

Logic of technology selection

(2) Substitution of existing technology

