CGE Model and its Role in Low Carbon Society Project

Toshihiko MASUI

National Institute for Environmental Studies

The 11th AIM International Workshop Ohyama Memorial Hall, NIES February 20th, 2006

Role of this tool

- This tool draws the balanced macro economy, based on social conditions such as population, technology and preference, countermeasures proposed by other teams, and the energy efficiency and primary energy supply estimated from bottom-up models.
- Supply and demand of energies are estimated from hybrid account system which consists of energy balance table and SNA.
- Based on the story lines, capital stock, income from/to the rest of the world and other account are taken into account.

Image of tool

Overall of this tool (1)

commodities and activities

- primary energy
 - coal, crude oil, natural gas, nuclear, hydro, other renewable (solar, wind, waste, biomass, ...)
- final energy
 - coal products, oil products, town gas, electricity, heat, hydrogen, biomass (solid, liquid, gas)
- Non-energy
 - agriculture, forestry, fishery, foods, textile, paper, chemical (material, products), cement, other ceramic, steel, non-steel metal, machinery, other production, construction, water, whole sale & retail trade, finance & insurance, real estate, transport (passenger, freight), communication, public service, other service

Overall of this tool (2)

i: commodity (1) $V_{i,i} = f_i (U_{e,i}, U_{n,i}, CAP_i, LAB_i)$: production function $e \in i$: energy goods (2) $\sum_{i} V_{j,i} + W_i + IMP_i - EXP_i = \sum_{i} U_{ij} + CH_i + CG_i + IH_i + IG_i$: commodity market $n \in i$: non-energy goods *j*: activity (3) $TK = \sum_{i} CAP_{i}$: capital market V_{ii} : output U_{ii} : intermediate demand (4) $TL = \sum_{j} LAB_{j}$: labor market CAP_i : capital input *CAPH*: capital input (private) $CAPG_i$: capital input (public) LAB_i : labor input W: waste generation from final demand sector *IMP*_{*i*}: import EXP_i : export *CH_i*: final consumption (household) *CG_i*: final consumption (government) (9) $K_{i,j} = k_i (CAP_j)$: fixed capital stock matrix *IH_i*: fixed capital formation (private) IG_i : fixed capital formation (public) TK: total capital (1) $CAP_{i} = CAPH_{i} + CAPG_{i} = \sum_{i} K_{i,i}$: capital stock TL: total labor GDP: gross domestic products *P*: commodity price PK_i : capital price ah: net income transfer in household PL: labor price ag: net income transfer in government K_{ii} : capital stock by sectors by d_i : service year investment goods g_{i} , gs: change in 2050 *SK*: social stock by investment goods ef_{a} : emission factor CO2: CO2 emissions er_{e_i} : fuel combustion rate

(5) $GDP = \sum_{i} CH_{i} + CG_{i} + IH_{i} + IG_{i} + EXP_{i} - IMP_{i}$: calculation of GDE (6) $\sum_{i} P_i * U_{i,j} + PK_j * CAP_j + PL * LAB_j = \sum_{i} P_i * V_{j,i}$: expenditure and income in production sector $\widehat{O} \begin{cases} \sum_{j} PK * CAPH_{j} + PL * TL + \sum_{i} W_{i} + ah = \sum_{i} P_{i} * (CH_{i} + IH_{i}) : \text{ expenditure and income in household} \\ \sum_{j} PK * CAPG_{j} + ag = \sum_{i} P_{i} * (CG_{i} + IG_{i}) : \text{ expenditure and income in government} \end{cases}$ (8) $IMP_i = imp_i(*), EXP_i = exp_i(*)$: assumption of import and export (1) $IH_i + IG_i = \sum_i g_j (d_i, g_j, K_{i,j}) + gs(d_i, gs, SK_i)$: investment goods market (12) $CO2 = \sum_{e} ef_{e} * (CH_{e} + CG_{e} + \sum_{i} er_{e,i} * U_{e,i})$: CO2 emission f_i : production function *imp*_{*i*}: import function *exp*: export function k_i : capital stock matrix g_{i} , gs: investment function

Image of input & output

Attempts to draw low carbon society

