

# Low Carbon Society Project: Data Availability and Feasibility in India

### P.R. Shukla Indian Institute of Management, Ahmedabad, India

Presented at The 11th International AIM Workshop NIES, Tsukuba, Japan February 19-20, 2006 Modeling and Data Availability Issues & How to overcome these?

# Model Structure and Modeling Issues

### Model Structure and Assumptions

- Perfect markets (Foresight, Completeness)
- Perfect property rights and enforceable contracts
- No distortions (perfect equilibrium)
- Path independence (learning effects)

### Modeling Issues

- Inadequate (model relevant) database
- Rapidly changing parameters (e.g. saving rates, trade, technologies)
- Changing global interface (PPP vs. Market Exchange Rate)
- Large informal sectors
- Dual economy and transition processes
- Market disequilibria
- Subsistence behavior (not profit maximization)
- Structural changes (e.g. export oriented IT industry in India)

# Data Issues related to Traditional Sectors

- Unavailability
- Disparity
- Inconsistency
- Incompatibility
- Unsuitability
- Diversity

# Example: Biomass Data Problems

- No database for supply or demand
- No formal data on resources/ technologies
- No price data as most biomass is collected and not traded
- No data for cost estimation, e.g. time spent for collection
- Consistent time series data is rarely available
- Shifting context and local events create wide data fluctuations

# How this translates in modeling problems?

- In absence of data, accounting has to be estimation based
- Bottom-up estimations too cumbersome
- Top-down estimates too error prone
- Aggregation is error prone due to diversity of resources and local conditions

# **Technology Data**

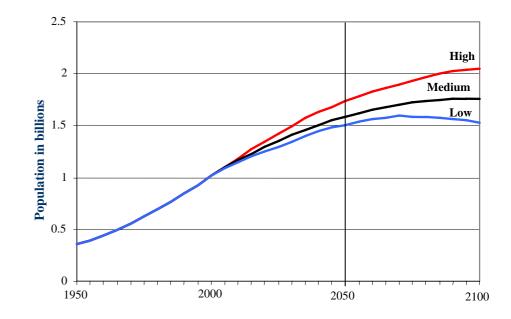
- Diverse Technologies and Vintages
- Local Learning
- Existence of Barriers
  - Technical Potential
  - Economic Potential
  - Market Potential
  - Market Penetration
- Data for Future Technologies has to come from Global Databases

Why and how these translate in modeling problems?

- Models assume no market barriers
- Models presume learning effects to be universal
- Technology representation in models is very aggregate and global
- Weak representation of future technologies add to significant uncertainties in long-term projections from models

## How to overcome shortcomings to get robust results?

- Aligning "Model" as scientific framework with Art of "Modeling"
  - > Structure of the model versus Assumptions
  - > From Model Results (Numbers) to Interpretations & Insights
- Modeler as the mediator translating complex reality
  - > Non-market Factors (e.g. multiple criteria assessment)
  - National Priorities and Policies
  - > Multiple baselines
  - Secondary benefits
- Modify model inputs to account for deviation from assumptions (E.G.)
  - > Introducing "fudge" factors like transaction costs
  - > Adding constraints such as on the transforming share of technologies
  - > Representing technology and resource diversity through multiple grades
  - Introducing back-stop technologies
- Data for New and Future Technologies from Global Databases
  - Shared Databases
  - > Global Modeling and Assessment Co-operations (e.g. AIM, EMF, PNNL)
- Consistency and Validation of National Scenarios
  - > Internal consistency of global scenario storylines across regions and countries
  - > Consistent and common assumptions
  - > Consistency of Macro Micro (i.e. Top-Down/Bottom-up) Assessments


Feasibility of Low Carbon Society in India in 2050: Aligning Development and Climate

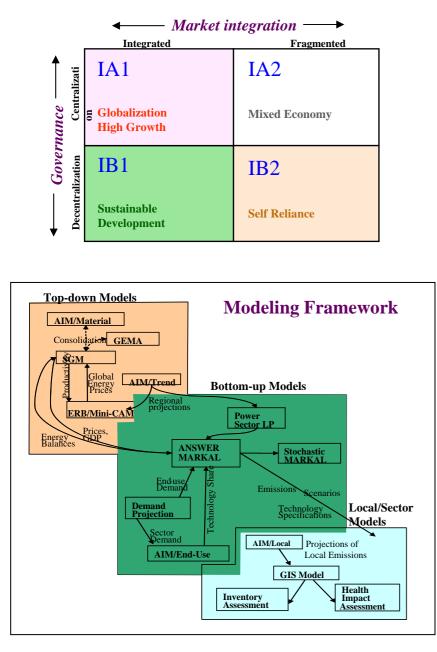
# **Drivers of Future Emissions**

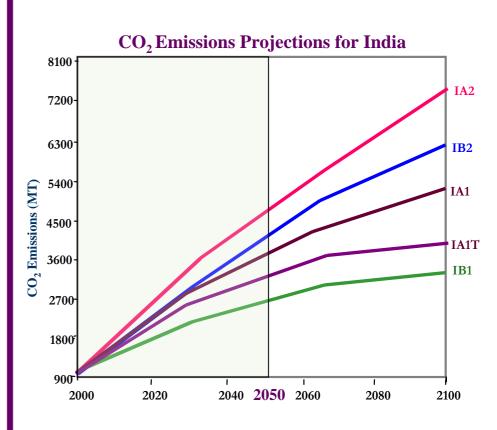

#### **Population**



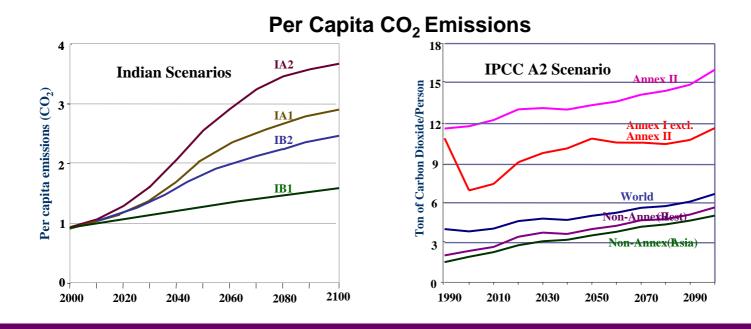
- Population
- Economic Growth
- Energy Resources
- Technologies



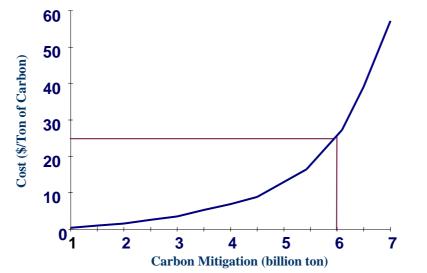

#### **Economic Growth**




#### **Emerging Drivers for Developing Countries**


- Transition Processes (Lock-ins)
- International Labor Markets
- Human Capital
- Knowledge Flows
- Governance (Risks, Investments)

### **Indian Emissions Scenarios**






### Indian Emissions: Equity and Cost-effectiveness



Mitigation Supply-curve from India 2005-2035)



# **Technologies in Scenarios**

Conventional Technology Paths: Include significant endogenous technological change

Synfuels, Next-Gen Nuclear Fission

Fuel cell vehicles, Pipeline networks

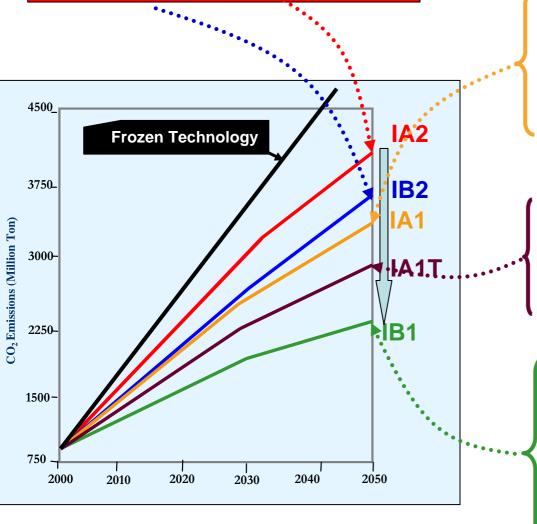
Energy efficient appliances/ infrastructure

Coal liquid, IGCC, Hydrogen from gas

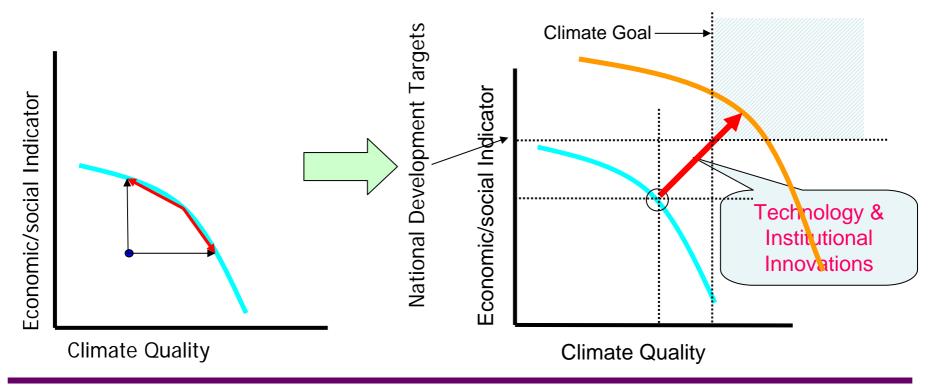
Nuclear (Thorium), Carbon-free hydrogen

Information highways, High speed trains

Advanced materials, Nanotechnology


Push for renewable energy & recycling

Bikeway, Advanced car sharing system

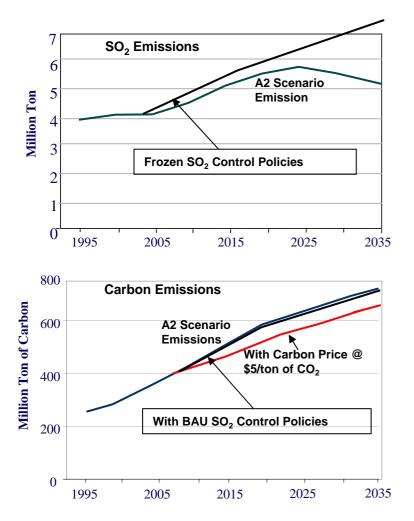

Substitution of transport by IT

Dematerialization, Material substitutions

Sustainable habitats & land-use practices



# Aligning Development and Climate




#### **Aligning Development & Climate Actions to Gain Multiple Dividends**

#### **Indian Examples**

- Air Quality and GHG Mitigation
- Energy Security and GHG Mitigation
- South-Asia Regional Energy and Economic Cooperation and Climate
- Infrastructure Investment and Climate Risks


### Joint SO2 and CO2 Mitigation

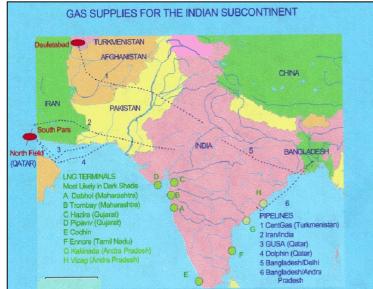


#### Joint Mitigation (Period 2005-2030)

| Mitigation Regime                                                                       | <b>Co-benefits</b>                           |  |
|-----------------------------------------------------------------------------------------|----------------------------------------------|--|
| SO <sub>2</sub> mitigation alone                                                        | Little carbon<br>mitigation                  |  |
| Joint Mitigation: CO <sub>2</sub> mitigation<br>@ \$5/ton & same SO <sub>2</sub> target | Joint mitigation costs<br>\$400 Million less |  |

### Energy Security and GHG Mitigation



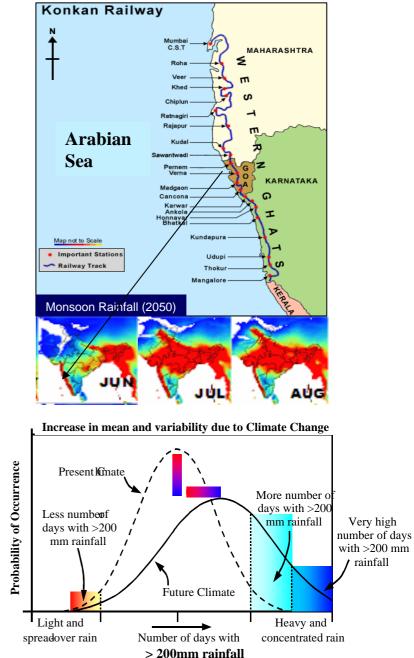

#### Energy Security: How choices matter to climate?

- Domestic Coal High Emissions
- Nuclear Fission Carbon Free, Safety Issues
- Wind Limited Potential, Supply stability
- Solar High upfront cost, Supply stability, Storage
- Bio-fuels
  - □ Ethanol Food Security, Water Stress
  - Bio-Diesel Land Restoration, Employment

#### Indian Bio-diesel Mission

- Phase I (2003-07):Demonstration Projects
  - Crop: Jatropha Curcas
  - 400,000 hectares of land
  - Participation by Oil Companies
- Phase II (2007-2012)
  - Self Sustaining Expansion of Biodiesel
  - Production target 1.2 MT of oil/ hectare

### South-Asia Energy Cooperation




| Benefit (Sa<br>Cumulative fr | aving)<br>om 2010 to 2030 | \$ Billion | % GDP |
|------------------------------|---------------------------|------------|-------|
| Energy                       | 60 Exa Joule              | 321        | 0.87  |
| CO <sub>2</sub> Equiv.       | 5.1 Billion Ton           | 28         | 0.08  |
| SO <sub>2</sub>              | 50 Million Ton            | 10         | 0.03  |
|                              | Total                     | 359        | 0.98  |

#### **Spillover Benefits:**

- 16 MW additional Hydropower
- Flood control
- Lower energy prices would enhance competitiveness of regional industries

### Infrastructure and Climate



# Conclusions

- Data and assessment capability problems in developing countries can be overcome by cooperative modeling (e.g. multi-national teams as in AIM project)
- Modeling assessment deliver robust results and insights for crafting policies, measures, instruments and technology strategies for transitions to low carbon society by 2050.
- Strategies for low carbon future should begin with shaping endogenous development path
- Stabilization would require mitigation even in low endogenous emission scenarios
- Achieving cost-effective global transition to low carbon future would call for substantial mitigation and adaptation actions in Developing Countries
- Stabilization would significantly alter energy system
- Policies and measures for achieving "National Sustainable Development Goals" provide climate friendly opportunities
- Aligning development and climate actions would accrue multiple dividends from cobenefits/spillovers and reduce '*climate burden*'