
Risk assessment of climate change for rice productivity in Asia

13th. AIM workshop February 16-18, 2008 Ooyama Hall, NIES, Tsukuba

Center for Global Environmental Research, National Institute for Environmental Studies (NIES), Japan Postdoctoral fellow

Yuji Masutomi

Introduction -Uncertainties in impact assessment-

We can not deterministically predict the impacts of climate change

Introduction - Risk assessment -

- Risk assessment approach is useful
 - This approach is not deterministic but probabilistic approach
 - Risk is calculated by
 - Σimpact × probability

We can know the impacts of climate change in the form of risk even if the uncertainties are included in the impacts.

Objective

- To assess risk of climate change on agricultural productivity
 - Where is the region with high risk?
 - Identify high risk regions
 - Which SRES scenario has high risk?
 - Identify high risk SRES scenarios
 - CO₂ fertilization effect VS Climate impact
 Crop productivity increase as CO₂ concentration increase.
 - What is an effective action to reduce risk?
 - Identify effective actions.

Simulation setting

• Simulation settings

- Crop: Rice
- Area: Asia (90% of rice is produced in Asia)
- **Period**: 2080s (from 1990s)
- Crop model: Global Agro-Ecological Zone model (Ficsher et al., 2002)
 - Input: climate variables, elevation, soil data and so on.
 - Output: Crop yield [kg/ha] (Potential yield)

Method –Estimation of risk-

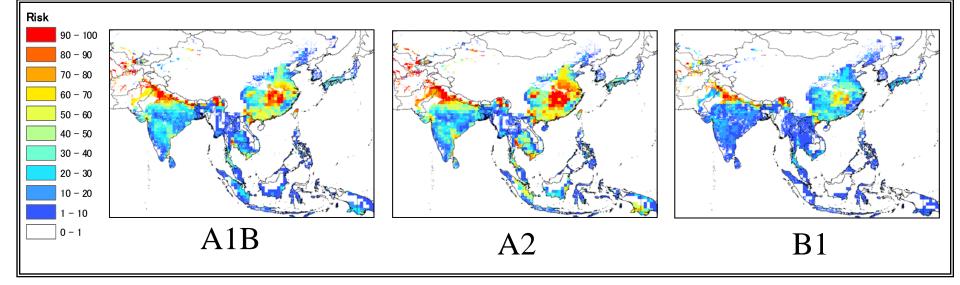
• Step1

- We calculate multi-impacts using multi-climate scenarios
- Step2

 $Risk = -\sum_{I < C} I \times Pr(I)$

- *I*: impact
 - change in rice production [%] calculated by crop model
- **Pr**: probability of impact *I*
 - We assume that each climate scenario is equally possible
 - the probability of an impact is 1/N (N: number of climate scenarios)
- C: threshold of impact
 - production decrease (C=0)

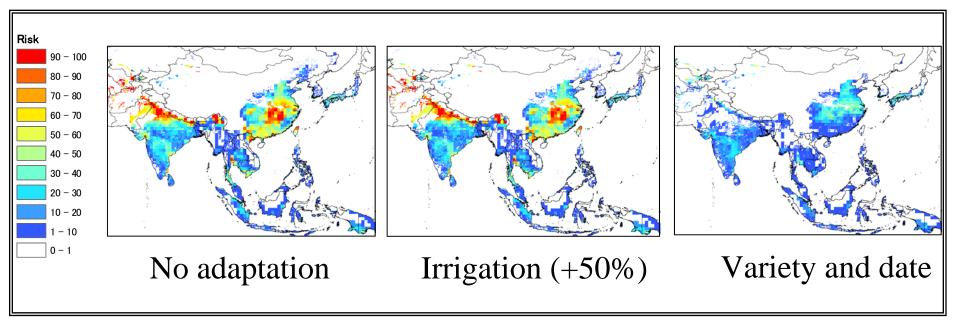
Max : 100; Min: 0


Climate scenarios (from PCMDI)

Country	Model name	A1B (18 GCMs)	A2 (14 GCMs)	B1 (17 GCMs)
Norway	BCCR-BCM2.0		0	0
Canada	CGCM3.1(T47)	0	0	0
Canada	CGCM3.1(T63)	0		0
France	CNRM-CM3	0	0	0
Germany	ECHAM5/MPI-OM	0	0	0
Germany / Korea	ECHO-G	0	0	0
China	FGOALS-g1.0	0		0
USA	GFDL-CM2.0	0	0	0
USA	GFDL-CM2.1	0	0	0
USA	GISS-AOM	0		0
USA	GISS-EH	0		
USA	GISS-ER	0	0	0
Russia	INM-CM3.0	0	0	0
France	IPSL-CM4	0	0	0
Japan	MIROC3.2(hires)	0		0
Japan	MIROC3.2(medres)	0	0	0
Japan	MRI-CGCM2.3.2	0	0	0
UK	UKMO-HadCM3	0	0	0
UK	UKMO-HadGEM1	0	0	

Adaptive actions

- Two adaptive actions
 - 1: Changes in crop variety and planting date (Variety and date)
 - Changing to suitable crop variety and planting date for future climate condition
 - Ex. Rice with high temperature tolerant
 - Ex. Planted on the date so as to avoid too hot period to grow
 - 2: Building irrigation facility (Irrigation)
 - From currently level
 - Stable water supply for crop growing in irrigated area

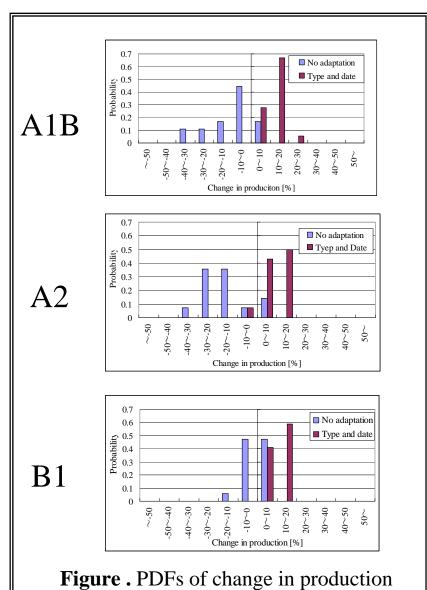

Result I : No action case - Where is the regions with high risk-- Which SRES scenario has high risk -

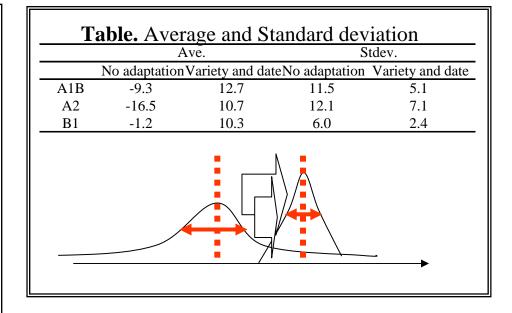
- Middle China and north India have high risk for all SRES scenarios
- A1B and A2 have high risk
- B1 has low risk

Result II : A1B

- What is an effective action to reduce risk?-

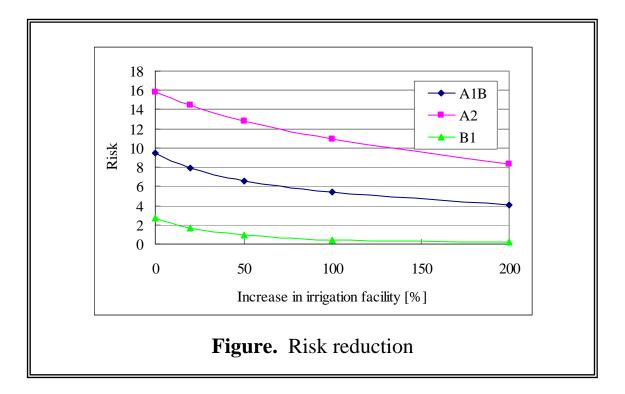
- Small difference between No adaptation and Irrigation action
 - Effect of building irrigation is small
- Big difference between No adaptation and Variety and date action
 - Variety and date action has big effect to reduce risk


Result III -Quantitative risk assessment-


d date

- A2 (no adaptive action)
 - has 1.5 times higher risk than A1B
 - has 6 times higher risk than B1
- Variety and date action can reduce risk to zero or nearly zero!!

Analysis


-Effect of changes in crop variety and planting date-

• Variety and date action reduce risk by not only shifting average but also reducing deviation!!

Analysis II -Effect of building irrigation facility-

- Irrigation action can reduce more risk as irrigation facility increase.
- For example, if we double irrigation facility in B1, risk will decrease to nearly zero even if we do not take variety and plant action

Summary

- We assessed risk of production decrease for rice in Asia
 - Middle china and north India have high risk if we take no adaptation.
 - A2 scenario has high risk.
 - Changes in crop variety and planting date can reduce risk to nearly zero.
 - Not only by shifting average but also by reducing variation of production change.