GHG Emissions and Mitigation Potentials in Agriculture

Tomoko HASEGAWA

Graduate school of Engineering, Kyoto University

15,16 February,2009, 11th AIM International Workshop National Institute for Environmental Studies, Tsukuba, Japan

Contribution Ratio to Global Warming

- Agriculture accounts for ...
 - 14% of total GHG emission.
 - 50% of total CH_4 emission and 60% of N_2O emission in 2005 (IPCC, 2007).

ス	ラ	1	k	2
---	---	---	---	---

h3	単位を, MtCO2eqに!
	長谷川 知子, 2008/01/27

Objectives

 To estimate and evaluate global GHG emissions and reduction potentials in Agriculture
To specify effective technologies, regions and emission sources with high reduction potentials

To evaluate GHG emissions and reduction potentials, we need to integrate the relating events such as...

Methodology

• Model is used for estimation.

Agricultural Trade Model (ATM)

- Structure: Partial equilibrium model 1200 functions and equations
- Input: Population and GDP
- Output: Production of agricultural commodities
- Calibration term: 1971 2003
- Estimation term: 2004 2030
- Region: 23 world regions

Structure

Structure

Structure World price 23 world regions Shipping cost Tax and tariff Producer subsidy Consumer subsidy Intermediate price Stocks Population I GDP Consumer price Producer price Ρ Consumption Production Q 0 Consumption **Production** function function Net trade Ρ Exogenous Endogenous Q 0 variable variable

World Market

Functions: Production and Consumption

Production function

 $Production_{i,r,t} = f(Production_{i,r,t-1}, Producer Price_{j,r,t})$

• Consumption (Con.) function

Food $Con_{i,r,t}$ = $f(Consumer \ price_{i,r,t}, \overline{GDPcap_{r,t}}, \overline{Population_{r,t}})$ Feed $Con_{i,r,t}$ = $f(Consumer \ price_{i,r,t}, \ Livestock \ production_{i,r,t})$

• Import and export are also decided by prices.

Structure

Balance Equations

• Domestic balance equation

 $Production_{i,r,t} + Import_{i,r,t}$ $= Consumption_{i,r,t} + Export_{i,r,t} + Stock_{i,r,t}$

• World balance equation

$$\sum_{r} Export_{i,r,t} = \sum_{r} Import_{i,r,t}$$

Methodology

• Model is used for estimation.

Enduse Model

- Structure: Dynamic model
- Input: Agricultural production
- Outputs: GHG emissions and Reduction potentials
- Calculates combination and stocks of GHG reduction technologies in order to minimize total reduction cost.

Technology Stock Change

A number of technology (tech.) is changed by 1) exchange and 2) introduction.

Application

Objective

- 23 world regions
- 2000-2030
- Population: medium estimates of UN(2006)
- GDP: Akashi (2009)

Emission Sources	Gases			
Enteric fermentation	CH ₄			
Manure management	$CH_{4,} N_2O$			
Cropland and Soils	N_2O			
Rice paddy	$CH_{4,} N_2O$			

Baseline Emission in 2000-2030

- World GHG emission will increase by 1.4 times by 2030.
- In 2030, emissions from croplands and livestock enteric fermentation account for 40% and 30% of it respectively.
- Emission from livestocks will increase at high growth rate.^{h2}
- Emission from rice paddy will decrease.

h2	C:\GAMS\Emission Model vol2\emissionPotential
	長谷川 知子, 2008/08/14

GHG Emission in 2000, 2030

- GHG Emission of this study is middle of other estimates.
- Cropland and Soils and Enteric Fermentations occupy high contribution ratio.

Which is Effective Source? In 2030 Reduction Potential by Source

- In 2030, total max. reduction potential is 1403 Mt CO_2 eq.
- Technologies for rice paddy is good.
- Technologies for enteric fermentation is not good.

Reduction Potentials [MtCO ₂ eq]		Marginal Abatement Cost [US\$/tCO2eq			
Emission sources	<0	<20	<50	<100	>100
Enteric fermentation CH ₄	0	0	3	41	255
Manure management CH ₄	0	95	98	110	345
Manure management N ₂ O	0	56	57	62	205
Rice paddy CH ₄	0	367	381	381	381
Cropland and Soils N ₂ O	148	198	198	198	217
Total	148	716	737	793	1403

35% of total GHG emission from agriculture in 2000.

Where is Effective Region? In 2030 Reduction Potential by region

- Reduction Potential in China, India and USA is large.
- Measurements in there regions take comparative low costs.

0 100 200 300 400 500 600

GHG reduction potentials [MtCO2eq]

What is Effective Technology ?

Conclusion

We introduced a model to estimate GHG emissions and reduction potentials in agriculture. We showed you an application to estimate and specify effective technologies, high reduction potential regions and emission sources.

- Total non-CO₂ emission from agriculture is about 3959 MtCO₂eq in 2000.
- Major emission source is Cropland and Soils .
- In 2030, the maximum global reduction potential is expected to be 1403 MtCO₂eq(35% of emission in 2000).
- China and India have major reduction potentials.
- The reduction technology with most economically efficient is expected to be "daily spread of manure ".

Thank you for your attention