Improvement and Application of Crop Productivity Model

14th AIM international workshop
15-16th Feb., 2009
Ooyama hall, Tsukuba, Japan
Yuji Masutomi

Contents

• Part I

– Impact assessment

• Part II

- Improvement of crop productivity model

Part I Impact assessment

-Uncertainty in impact assessment-

Country	Model name	A1B (18 GCMs)	A2 (14 GCMs)	B1 (17 GCMs)
Norway	BCCR-BCM2.0			
Canada	CGCM3.1(T47)			
Canada	CGCM3.1(T63)			
France	CNRM-CM3			
Germany	ECHAM5/MPI-OM			
ermany / Korea	ECHO-G			
China	FGOALS-g1.0			
USA	GFDL-CM2.0			
USA	GFDL-CM2.1			
USA	GISS-AOM			
USA	GISS-EH			
USA	GISS-ER			
Russia	INM-CM3.0			
France	IPSL-CM4			
Japan	MIROC3.2(hires)			
Japan	MIROC3.2(medres)			
Japan	MRI-CGCM2.3.2			
UK	UKMO-HadCM3			
UK	UKMO-HadGEM1			

Result - Change in rice production in Asia -

	2020s (vs. 1990s)			2050s (vs. 1990s)			2080s (vs. 1990s)		
	A1B	A2	B1	A1B	A2	B1	A1B	A2	B1
Average	-3.3	-4.5	-2.5	-0.3	-0.9	0.2	-5.0	-9.9	-0.5
S.D.	3.2	3.2	3.1	3.9	3.7	3.3	7.2	8.4	4.8
Pr. of production decrease	83.3	100.0	76.5	44.4	57.1	52.9	72.2	85.7	47.1

- In the 2020s
 - High probabilities of a production decrease
- In the 2050s
 - Small impact
- In the 2080s
 - Large difference in average change in procution among the SRES scenarios
 - A2 has the largest negative impact despite largest CO2 fertilization effect

Part II Improvement of crop productivity model

Improvement of crop model

- Increase in chemical inputs and technological development brought the large increase in crop productivity for the last 4 decades
- When we assess the impact of climate change and discuss future food security, it is necessary to consider the increase in crop productivity

Unfortunately, AIM/Agriculture model (AEZ model) can not simulate the response of crop to chemical inputs.

Preliminary result

- I developed a new global crop model (G-SWAT)
 - Based on SWAT model
 - Simulate nitrogen and phosphorus cycles in soil.

• Considering changes in the amount of nitrogen input and changes in cultivars

Future challenges

- Further improvement of the new crop model
 - Parmeterization
- Impact study
 - Adaptation policy assessment
 - Globally and locally
 - Crop model uncertainty
- Environmental pollution
 - Emission of N₂O
 - Fertilizers and pesticide load
- Model linkage
 - AIM/Impact[policy] (Dr. Hijioka)
 - Water resources model (Dr. Hanasaki)
 - Economic model (Drs. Masui and Matsumoto)
 - Carbon cycle model (Dr. Ito)
 - Land use change model (Dr. Kinoshita)

Thank you for your attention!