The Dynamic Changes of Soil Moisture in Loess Plateau

between 1961-2000 and under climate changes

Songcai You, Suchuang Di, Zehui Li

Institute of Geographic Sciences and Natural Resources Research, CAS

1. Location and Environmental Situation

2. Models and Data

Soil water balance model

$$W_{s2} = W_{s1} + P - E_s - X$$

 Conversion model of soil mechanical classification between Intl. standard and U.S. standard

$$P(r) = \frac{1}{1 + (1/P(r_0) - 1) \exp(-uR^c)}$$

Pedotransfer functions for soil field capacity estimation

$$\psi = A\theta^B$$

2. Models and Data

- Soil effective depth (by Saxton etc, 1989), depending on soil texture and vegetation type
- Other models: Evaporation (Penman-Monteith), interpolation (by ANUSPLINE, Hutchinson, 1989), etc.

■ Data

Soil map, soil profile data, climate data, land use map, GCM data (CCSR/NIES, A1B), DEM data (SRTM)

3. Outputs

◆ Soil field capacity (in mm)

3. Outputs

◆ Soil water content in Loess Plateau Region (in mm)

3. Outputs

◆ Soil water change (1961-2000) (A: Jan, B: Apr, C: Jul, D: Oct)

4. Reasons

Precipitation change

The mean annual precipitation decreased by 8.4% from 443.0 mm in 1960s to 405.7 mm in 1990s.

4. Reasons

Evapotranspiration change

The mean annual evapotranspiration slightly decreased by 2.3%, from 1055.1 mm in 1960s to 1031.1mm in 1990s. The sunshine time decreased from 2754.1 hrs in 1960s to 2626.7 hrs in 1990s.

4. Reasons

◆ Temperature changes

The lowest temperature increased by 1.8 , from - 6.7 in 1960s to -4.9 in 1990s. The highest temperature increased by 0.6 , from 21.7 in 1960s to 22.3 in 1990s.

◆ Soil water content (in mm)

◆ Soil water changes (in mm) (A: Jan, B: Apr, C: Jul, D: Oct)

В Α 50 30 D

◆ Precipitation (in mm)

◆Precip. changes (in mm) (A: Jan, B: Apr, C: Jul, D: Oct)

Evapotranspiration (in mm)

◆Evapotran. changes (in mm) (A: Jan, B: Apr, C: Jul, D: Oct)

◆ Temperature ()

◆Temperature () (A: Jan, B: Apr, C: Jul, D: Oct)

◆ Solar radiation (in MJ/m2/month)

6. Conclusions

- 1. The soil water content decreased compared between 1960s and 1990s,
- Though precipitation will increase according to the projected scenario from CCSR/NIES (A1B), soil water content will decreased, as the ranges of temperature and radiation increase are more bigger than that of temperature.