Global water scarcity assessment under RCP-SSP scenarios

Naota Hanasaki

National Institute for Environmental Studies, Japan

Outline

- **Global** impact assessment on water resources
- Interaction between IAM and IAV
- 1. Background & Objective
- 2. Methodology
- 3. SSP compatible global water use scenarios
- 4. Results
- 5. Summary

Background & Objective

- Assessment of CC impact and adaptation on water resources
- Hundreds of reports & papers have been published (TAR, AR4, SREX, Arnell, 2004; Alcamo et al., 2003,2007, ...)
- Shortcomings of earlier works
 - Annual basis assessment (neglecting variations of water availability and use)
 - Fix non-climate variables/factors (inconsistent with socio economic/emission scenarios)
 - 3. Based on SRES (RCP and SSP are readily available)
- Objective: overcome above three issues

H08 model

Characteristics

- 1. High spatial resolution $(0.5^{\circ} \times 0.5^{\circ}$, total 66,420 grid cells)
- 2. Simulate both water availability (streamflow) and water use at daily-basis
- 3. Deal with interaction between natural
 - hydrological cycle and anthropogenic activities

Input and Output

Meteorological (0.5°×0.5°, 6hourly, 1971-2000)			Output (0.5°×0.5	5°, daily, 1971-2000)		
Air temperature	WATCH Forcing Data		Land	Evapotranspiration		
Specific humidity	(Weedon et al., 2011)		sub-model	Runoff		
Air pressure				Soil moisture		
Wind speed	Future ?			Snow water equivalent		
Shortwave radiation	-GCM			Energy term		
Longwave radiation	-Bias correction		River	Streamflow		
Precipitation	-Downscale		sub-model	River channel storage		
			Crop growth	Planting date		
Geographical/other	(0.5°×0.5°, circa 2000)		sub-model	Harvesting date		
Cropland area	Ramankutty et al. 2008			Agricultural water dem.		
Irrigated area	Siebert et al., 2005			Crop yield (not used)		
Crop intensity	Döll and Siebert, 2002		Reservoir	Reservoir storage		
Irrigation efficiency	Döll and Siebert, 2002	Future	sub-model	Reservoir outflow		
River map	Döll et al., 2003		Withdrawal	Agri. water withdrawal		
Reservoir map	Hanasaki et al. 2006	2	sub-model	Ind. water withdrawal		
Industrial water dem.	FAO, 2011			Dom. water withdrawal		
Domestic water dem.	FAO, 2011	_	Environmental flow	Env. flow requirement		

IPCC Scenarios

SRES

- 4 emission and socio-economic composite scenarios
- 9 variables, 4 regions, 10-yearly
- <u>http://sres.ciesin.columbia.edu/</u>

RCP & SSP (AIM Interim)

- 4 emission scenarios (RCP) x 5 socio-economic scenarios (SSP)
- 6 variables?, **12** regions, **yearly**
- <u>http://www-iam.nies.go.jp/aim/aimssp/</u>

Simulation settings

Socio-economic Scenario			Emission scenario				Climate Scenario			
SSP1: Low population, High income		\checkmark	With climate policy STaBilize at 4.5W/m ²			CanESM2 RCP4.5 (r1i1p1)		2 r1i1p1)		
SSP3: High population, Low income			No climate policy Business As Usual			CanESM2 RCP 8.5 (r1i1p1)		r1i1p1)		
Population (GDP (2005	5 USD)					ΔT	ΔP
CTR	2005	6.51x10 ⁹	45.7x1() ¹² USD		CTR	1961-19	90		
SSP1	2055	8.08 x10 ⁹	212.9 x10 ¹² USD			RCP4.5	2041-2070		+3.1K	+3.7%
SSP3	2055	11.10 x10 ⁹	140.7 x10) ¹² USD		RCP8.5	2041-20	70	+4.1K	+4.7%
		—	14							

+Electricity generation

H08 additionally needs water specific scenarios.

Water scenarios (1/7)

Agricultural (=irrigation) water withdrawal modeling

How should we set up scenarios for these factors?

Water scenarios (2/7)

Irrigated area, crop intensity, irrigation efficiency scenarios

Reference	Population	GDP	Irrigated area_(10 ⁶ ha)			Irrigated	Cro	p	Irrigation
			2000	2030	2050	area growth	inte gro	ensity wth rate	growth
						rate (%/yr	·) (%/	Lliab	voriont
Rosegrant et al. 2002	UN 1998 med	IFPRI	375 (1995)	441 (2025)	F			підп	vallalli
Bruinsma , 2003 (Faures et al., 2002)	UN 2001 med	WB 2001	271 202 <u>257</u>	324 242 <u>341</u>	(365)	0.60	0.4	1	0.3
Alcamo et al., 2005 MA-Techno Garden	MA-TG	MA-TG	239		252	0.11			/
de Fraiture, 2007 CA-Irrig area expansion	MA-TG	MA-TG			<u>450</u>	0.60	Me	edium	variant
CA-Comprehensive	MA-TG	MA-TG			<u>394</u>	0.30	0.	2	0.15
CA-Irrig yield improve	MA-TG	MA-TG	. 340		<u>370</u>	0.15			
CA-rain area expansion	MA-TG	MA-TG			<u>340</u>	0			
CA-rain yield improve	MA-TG	MA-TG			<u>340</u>	0			
CA- trade	MA-TG	MA-TG			<u>340</u>	0		Low	variant
Rosegrant et al., 2009	UN 2005 med	MA-TG	433	478 (2025)	473	0.06	0.15		0

Industrial & domestic water withdrawal modeling

Earlier studies developed multi-regression models but,

- parameters are highly unstable
- parameters are unique: not suited for scenario study.

More flexible model is needed for scenario study.

Water scenarios (4/7)

Industrial/Domestic intensity scenario

Revisiting concept of SSP

Narrative scenario of SSP

SSP1	Sustainable world High international cooperation High technological improvement High environmental awareness
SSP2	Middle of the road in between SSP1 and SSP3
SSP3	Fragmented world Low international cooperation Low technological improvement
SSP4	Divided in rich & poor Low international cooperation High technological improvement
SSP5	Coal gas powered growth High international cooperation High technological improvement Low environmental awareness?

SSP interpretation

SSP compatible water scenarios!

Water resources assessment

High Stress

Daily basis

Index= $\frac{\sum daily withdrawal (simulated)}{\sum daily demand (simulated)}$

High stress	Index<0.5				
Medium stress	0.5≤index<0.8				
Low stress	0.8≤Index				

Water stressed population

		CWD	WWR
CTR	2000	1.61x10 ⁹ (G)	1.94x10 ⁹ (G)
SSP1-BAU	2041-2070	2.76x10 ⁹ (G)	2.62x10 ⁹ (G)
SSP1-STB	2041-2070	2.64x10 ⁹ (G)	2.57x10 ⁹ (G)
SSP3-BAU	2041-2070	4.06x10 ⁹ (G)	3.90x10 ⁹ (G)
SSP3-STB	2041-2070	3.97x10 ⁹ (G)	3.86x10 ⁹ (G)
Alcamo et al., 2007	2055 (B2)	N.A.	5.15-5.24x10 ⁹ (B)

- Water stressed population in the middle of the 21st century — SSP1 << SSP3, STB < BAU

- Socio-economic scenario has larger sensitivity than climate policy scenario → <u>Socio-economic scenario matters.</u>
- Water availability impacts economic activities? → <u>Consistent</u> <u>scenario links IAM and IAV modeling.</u>

Summary

- Summary
 - RCP/SSP based simulation using H08.
 - Proposal of SSP compatible water use scenarios
 - <u>Socio-economic scenario matters</u> to global CC water resources assessment.
 - <u>Consistent scenario links IAM and IAV modeling</u>. Further collaboration needed for better modeling & understanding.
- Future works
 - Polish models, scenario interpretation
 - Examine other scenarios, period
 - Regionally/Temporally detailed analyses

Summary (2/2)

Advertisement: H08 is freely available

- H08 web site
 - <u>https://sites.google.com/site/h08model/</u>
 - Source code and manual
- Input & Output data server
 - <u>http://158.210.90.124/</u> (available soon)
 - Including CMIP3 & CMIP5 data
- Recent papers
 - Virtual water and complex network theory (Konar et al., 2011; Suweis et al. 2011)
 - Intl. model intercomparison (<u>Haddeland et al., 2011</u>)
 - H08 in MIROC earth system model (<u>Pokhrel et al. 2012</u>)

Industrial water withdrawal x: year, y: total withdrawal[km³/yr]

Industrial water withdrawal x: GDPPC, y: intensity [m³/yr/MWh]

Industrial water withdrawal x: year, y: intensity [m³/yr/MWh]

Domestic water withdrawal x: year, y: total withdrawal [km³/yr]

Domestic water withdrawal x: GDPPC, y: intensity [litter/day/person] Hanasaki et al. in prep 600 Singapore H Emirates [H] Italy H 300 300 300 400 100 400 200 200 200 200 200 200 Belgium_[H] +00 100 Israel_[H] 100 Japan_[H] 0 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 600 600 юо юо £00 **4**00 Mauritius (M) Venezuela. 900 300 900 400 400 200 200 00 200 200 200 Jordan [M] Chile_[M] Lebanon [M] 400 Romania (M 100 1+00 600 0 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 200 200 Algeria [M] Thailand [M] Gambia [L] China [L] India [L] Pakistan [L] 150 +50 150 150 150 150 100 100 100 юо 100 100 -50 -50 -50 50 -50 -50 0 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000 1970 1980 1990 2000

Hanasaki et al. 2010

Water withdrawal

