19th AIM International Workshop– Tsukuba, Japan, December 13-14, 2013

Assessment of Guangdong Carbon Emission Trading with AIM/CGE Model

Wang Peng¹ Dai Han-cheng² Zhao Dai-qing¹ Toshihiko Masui² Ren Song-yan¹ 1.Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, China,Guangzhou 2. National Institute for Environmental Studies, Tsukuba-City, Japan

Introduction

- Guangdong contributes over 11% of China's GDP and consumes 8% (19.6 million tons of coal equivalents) of China's energy in 2007.
- Guangdong has committed to reduce its carbon intensity per unit of GDP by 19.5% in 2015 from 2010 level and decided to implement carbon emission trading system across industry sectors.

Future scenario

- All the datasets are converted to the base year of 2007.
- The projections on population and GDP are based on the 12th five-year economic development plan and research assumptions.

Table.1 Key assumptions

• At the first stage, four sectors are selected for emission trading, including power, cement, oil refinery ,iron and steel sectors which contribute to 58% of total CO₂ emissions in Guangdong.

Methods

- This study uses the dynamic provincial CGE model developed by NIES to assess carbon trading policy under the constraint of carbon intensity reduction target towards 2020.
- This model is a two-region recursive dynamic CGE model and selects 2007 as the base year and include 33 sectors.
- Five scenarios are constructed considering two dimensions (Table 2): scenario SAV has weaker target whereas LCE has more stringent target (Fig. 1). In addition, scenarios SAVET and LCET allow emission trading.

		2010	2015-2	020				
Population (thousand)			97302	0.5%				
	GDP (billion Yuan)		3994	7.8%				
Table.2 Scenario setting								
	Scenario	Ca	arbon constraint		CM			
		Intensity target	Sector em	ission cap	Emission			
		2010-20	2015	5-20	trade			
1	BaU	×	×	•	×			
2	SAV	-33%	Power sector	: 1% annual	×			
3	SAVET	-33%	increase, other three sectors: 2% annual increase		V			
4	LCE	-40%	Fixed to 2	015 level	×			
5	LCET	-40%						

GD: CO2 emission path	Carbon abatement cost

Results

Impacts of intensity target

• The more stringent the target is, the more GDP loss there would be (Fig.3).

Impacts of emission trading

- Without emission trading, carbon price of oil refinery and iron & steel sectors would be relatively high and that of power sector would be low (Fig 2).
- With carbon trade the sector abatement costs of cement, oil refinery and iron & steel sectors would decrease (Fig 2).
- Power sector is the seller due to renewable energy development, whereas other three sectors are buyer (Fig. 4).

Conclusion	Fig.3: GDP loss of four policy scenarios	seller while negative means buyer)		
Copolucion		Fig.4: emission trading (positive means		
		Oil refin 📕 Cement 📕 Iron 📕 Power		
		2013 2015 2017 2019		
	2007 2010 2013 2016 2019	-20		

- This study evaluates the economic impacts of Guangdong's carbon emission trading system.
- Implementing carbon trade could reduce the abatement costs of cement, oil refinery , iron and steel sectors, and the costs of other sectors will increase.
- More stringent cap will cause more GDP loss, so it is important to consider how to set the sector cap for industry which will not harm the industry too much.

References :

[1].National Bureau of Statistics of China, National EnergyAdministration of China. China energy statistics yearbook 2008.Beijing, China Statistics Press; 2009 [in Chinese].

[2].H. Dai et al. Assessment of China's Climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model. Energy policy 39(2011)2875-2887.

[3]. Fujimori (2012) AIM/CGE model manual. Internal report. AIM, NIES.