Preliminary Results of Transport Electrification Scenarios in Nepal Bijay Bahadur Pradhan Asian Institute of Technology and Management, Nepal

INTRODUCTION

- Transport sector consumed 63.13% of the total oil imports and 15.9% of the total final commercial energy supply in 2010.
- Compound annual growth rate of total number of vehicles was 17% from 2000 tot 2010.
- Transport Sector in Nepal has the second highest share (7%) in total final energy consumption and the highest share (42%) in the total Greenhouse Gas (GHG) emission in 2010.
- Nepal has a technical hydro-electricity potential of (42000 MW) but only 652 MW was utilized in 2010.
- Transport electrification can have a vital role in low carbon development and energy security of Nepal.

Final Energy Consumption

GHG Emission

OBJECTIVES

• To analyze the effect of transport sector electrification in total primary energy consumption and GHG emissions in Nepal.

SCENARIOS DESCRIPTION

- Cumulative energy consumption in transport decreased by 5.9 millions toe and 10.3 millions toe in TES-L and TES-H scenario.
- Gasoline motorcycle has the highest passenger service share in all the scenarios.

FUTURE TREND

- AIM End-use is used as an analytical tool to develop the model of Nepal.
- Transport Sector will have the second highest share (35%) in total final energy consumption in 2050 in business-as-usual (BAU) Scenario.

Fuel Switching	Modal Shift	Fuel Switching	Modal Shift
 Fuel shift of vehicle from oil to electric and hybrid Promotion of electric passenger vehicle 	 Modal shift from road transport to electric rail transport 	 Fuel shift of vehicle from oil to hybrid fuel Promotion of hybrid freight vehicle 	 Introduce electric rail freight transport

- Two scenarios are compared with the BAU scenario in this study:
 - 1. Transport Electrification Scenario Low (TES-L)
 - 2. Transport Electrification Scenario High (TES-H)
- **Description of TES-L:**
- 10 % penetration of electric and hybrid vehicles in road transport and 5% modal shift from road to electric rail transport in 2025
- increment of electric rail transport from 5% to 10% in 2050
- Description of TES-H:
 - 10 % penetration of electric vehicles in road transport and 5% modal shift from road to electric rail transport in 2025
 - increment of electric vehicles in road transport to 20% and increment in electric rail transport from 5% to 10% in 2050

RESULTS AND DISCUSSION

- Penetration of electric and hybrid vehicles along with modal shift decreases the total final energy consumption in transport sector.
- Share of oil products in the total final energy consumption in transport sector decreased from 98.4% in BAU scenario in 2050 to 94.5% and 90.3% in TES-L and TES-H respectively.

- GHG emission decreased by 11.8% and 23.8% from BAU scenario in TES-L and TES-H scenario.
- SO₂ emission decreased by 13.5% and 26.9% from BAU scenario in TES-L and TES-H scenario.

• Transport sector will continue to have highest share of GHG emission in 2050

Sectoral Energy Consumption in BAU

• Consumption of oil decreased by 10.8% and 22% in 2050 in TES-L and TES-H scenario.

Scenario	Total cumulative capital cost in 2025-2050 (millions USD)
BAU	68,396
TES-L	97,659
TES-H	123,786

REFERNCES

- Dhakal S (2006) Urban transportation and the Environment in Kathmandu Valley, Nepal . Institute for Global Studies, Hayama.
- Kainuma, M., Matsuoka Y., Morita T. (2003) Climate Policy Assessment- Asia-Pacific Integrated Modeling, Tokyo, Japan.
- NEA (2011) Nepal Electricity Authority Fiscal Year 2010/2011- A year in Review. Kathmandu
- Shakya S.R., Kumar S, Shrestha R.M. (2011) Cobenefits of a carbon tax in Nepal. Mitigation Adaptation Strategy Global Change.
- Shrestha, R.M., Rajbhandari, S., 2010. Energy and environmental implications of carbon emission reduction targets: case of Kathmandu Valley, Nepal. Energy Policy 38 (9), 4818–4827.
- WECS (2010) Energy Synopsis Report 2010. GoN, Kathmandu.