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Here ACP,Xs, SDCP,Xs, and PPD(CPXs < 0) are, respectively, the average
change in production [%], the standard deviation of change in
production [%], and the probability of a production decrease [%]
from the 1990s to the simulation period Xs; CPXs,model is the change
in production [%] from the 1990s to the simulation period Xs under
the climate scenario model; PRXs,model represents the average
production [kg] for the simulation period Xs under the climate
scenario model [calculated by using the area integral of YXs,model

over the whole of Asia (or the country of interest) for current rice
fields (Leff et al., 2004), as we did not consider land-use change in
this study]; YXs,model is the 10-year average yield [kg/ha] of Yyr,model

in the simulation period Xs under the climate scenario model;P
yr 2Xs indicates the summation of Yyr,model for year yr in the

simulation period Xs; Yyr,model is the gridded yearly yield [kg/ha] for
year yr under the climate scenario model; NUM is the number of
climate scenarios where CPXs.model < 0; subscript Xs corresponds to
the simulation period (1990s, 2020s, 2050s, or 2080s); and model
represents each climate scenario. In addition, subscript yr indicates
the year of each simulation period, and n is the number of climate
scenarios used for each SRES scenario (A1B: n = 18; A2: n = 14; B1:
n = 17). When the CO2 fertilization effect was taken into account,
the multipliers listed in Table 3 were applied to YXs,model.

3. Results

3.1. Spatial impact of climate change

Examination of the average changes in yield
(=(YXs,model ! Y1990s, model) " 100/Y1990s, model) [%] without the CO2

fertilization effect (Fig. 4) revealed that climate change would
reduce yield over a large area of Asia. The regions that showed large
decreases in yield were western Japan, eastern China, the southern

part of the Indochina peninsula, and the northern part of South
Asia. In all these regions, increases in temperature during the
growing periods were the main likely causes of the decreases in
yield. In western Japan and eastern China, increases in temperature
during winter contributed to the decreases in yield owing to
increases in the magnitude of agro-climatic constraints (i.e., pests,
diseases, weeds, excess wetness, and worsening soil workability).
Management conditions, such as input levels and water manage-
ment scheme, also affected spatial differences in the average
changes in yield over Asia.

We then examined the average changes in yield [%] over Asia
with the CO2 fertilization effect (Fig. 5); Table 5 shows the ACP

values with the CO2 fertilization effect for each country. In some
regions, the negative impacts of climate change were diminished
by the positive effect of CO2 fertilization, whereas the net impacts
were still negative in regions with large negative impacts caused
by climate change. Large decreases in rice production were
observed in China, Cambodia, Nepal, and Vietnam in the 2080s,
especially under scenarios A1B and A2 (Table 5).

3.2. Average changes, standard deviations, and probabilities of
production decrease

We examined the ACP values in Asia without and with the CO2

fertilization effect (Figs. 6 and 7, respectively). Table 6 lists these
values, including the SDCP and PPD values. In the 2020s, the average
negative impacts of climate change (as represented by ACP without
the CO2 fertilization effect) were small—at most !6.3% in A2 (see
Table 6)—but negative for all SRES scenarios. Even when the
positive effect of CO2 fertilization was taken into account, the
average changes in production were still negative for all SRES
scenarios. Moreover, the PPD values in the 2020s were high for all

Fig. 4. Average change in yield (ACY = (YXs, model ! Y1990s, model) " 100/Y1990s, model) [%] without the CO2 fertilization effect (only grid cells containing rice fields are shown).
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an in-service Airbus aircraft in the framework of the MOZAIC pro-
gramme during the flights. From the measured MOZAIC vertical
ozone profiles, we used the lowest altitude value available for the
locations in Central-West Africa (Lagos, Abidjan, Douala).

The error bars on the measured values represent the standard
deviation on the station monthly means. They do not include the
individual station’s standard deviations on higher temporal scales,
nor the analytical uncertainty.

In general, the model is reproducing reasonably well the
monthly mean ozone concentrations in regions where quality-
controlled ozone monitoring programs are routinely running
(Central Europe, U.S.A., Japan). During the summer months, the
modelled 10 m concentrations fall within 1 standard deviation of
the observations and the seasonal trend is well reproduced. Also for
South-East Asia and Southern India we find a satisfactory model
performance. In Northern India and the two African regions, the
model is significantly overestimating the observed ozone levels.
This is particularly of concern for S.-India seen the expected impact
on crop losses. The reason for the worse model performance in
these regions is not clear a priori. Uncertainties in the emission of
ozone precursors may be an important factor, as well as the
reduced model resolution over Africa. But also the observational

data may not adequately represent the regional-scale ozone
concentrations. In fact, out of the 4 N.-Indian measurement
stations, 3 are located in densely populated urban areas where
ozone levels may be suppressed by local titration, whereas the 4th
is a regional station however using a passive sampler as measure-
ment technique.

Indeed, more recent air pollution measurements in the peri-
urban and rural areas around Varanasi in the Indo-Gangetic plane
(Agrawal et al., 2003) show that summer average ozone concen-
trations may span from 10 to 58 ppbV, depending on the location
relative to the nearby city. In contrast to this, the S.-Indian obser-
vations are obtained in peri-urban locations, and in this case the
agreement with the model is much better.

We also evaluated the model performance in reproducing
monthly accumulated AOT40 and monthly averaged M7 for those
locations where hourly ozone data are available (Europe, US and
Japan). Results are shown in Fig. 7 (M7) and Fig. 8 (AOT40). Note
that for these metrics, obtained during daytime only, the vertical
gradient becomes less pronounced than for the monthly means,
because of the better vertical mixing of the boundary layer. For M7,
the agreement between model and measurements is excellent for
south-west and south-east US, the Mediterranean area, and central
Europe. For the US Great Lakes region, spring time M7 is under-
predicted by 15–20 ppbV but summer months are well reproduced.
For Japan, the summer months are significantly over-predicted by
up to 20 ppbV. Modelled M7 (as is the case for M12 and the
monthly mean) appears not to be very sensitive to the ozone
sample height.

The picture looks similar for AOT40 (Fig. 8), but differences
between model and measurements are amplified as a consequence
of the cumulative nature of the metric in combination with a non-
zero threshold (Tuovinen et al., 2007). In particular for Central
Europe, the difference between model and measured AOT40 is
disturbingly high; other regions are performing better. Table 3

Table 3
Regionally averaged modelled-to-measured ratio of both metrics during the months
May–June–July, at a model height of 30 m and 10 m above the surface respectively.

Region M7, 30 m M7, 10 m AOT40, 30 m AOT40, 10 m

SW US 1.03 1.01 1.02 0.95
SE US 1.23 1.20 1.25 1.12
US Great Lakes 0.87 0.83 0.60 0.44
Mediterranean 1.07 0.99 0.98 0.73
Central Europe 0.97 0.95 0.37 0.25
Japan 1.33 1.21 1.71 1.27

Fig. 9. Average relative yield loss from 2 metrics for the 4 crops, year 2000.
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Global	  warming	  will	  have	  significant	  impacts	  
on	  rice	  produc7vity	  over	  Asia.	

Masutomi	  et	  al.	  (2009)	

SRES scenarios. This is because the negative impacts of climate
change for almost all climate scenarios were small but larger than
the positive effects of CO2 fertilization in the 2020s.

In the 2050s, the ACP values without the CO2 fertilization effect
were greater than in the 2020s (Fig. 6, Table 6). On the other hand,
the absolute values of ACP in the 2050s, taking into account the CO2

fertilization effect, were very small in all SRES scenarios (Fig. 7,
Table 6). This is because the increased average negative impacts of
climate change were almost equal to the increased CO2 fertilization
effect in each SRES scenario. However, more importantly, the PPD

values were not zero (PPD ! 0.5), owing to the process/parameter
uncertainty in the GCMs, as shown by the SDCP values in Table 6
and the error bars in Fig. 7.

In the 2080s, the ACP values without the CO2 fertilization effect
were greater than in the 2050s. The increases in negative impacts
of climate change under scenarios A1B and A2 accelerated over
time. The ACP values showed large differences among the SRES
scenarios due to large differences in the negative impacts among
the SRES scenarios (Figs. 6 and 7 and Table 6). The SDCP and PPD

values also showed large differences among the SRES scenarios.
The scenario with the highest atmospheric CO2 concentration, A2,
showed a large decrease in production and a high PPD, despite
having the largest CO2 fertilization effect. In addition, A2 showed

the largest SDCP among the SRES scenarios. On the other hand, the
scenario with the lowest atmospheric CO2 concentration, B1,
showed a small decrease in production, a much smaller SDCP, and a
much lower PPD than in the case of A2.

4. Discussion

4.1. Comprehensive consideration of process/parameter uncertainty
in GCMs

We comprehensively considered the process/parameter uncer-
tainty in GCMs by using a large number of future climate
projections based on GCMs. Many studies have considered the
process/parameter uncertainty in GCMs by using multiple future
climate projections (e.g., Rosenzweig and Parry, 1994; Fischer
et al., 2005), However, this uncertainty has not been comprehen-
sively considered in most of these studies, which have used only
small numbers of GCM-based future climate projections. One
problem in impact assessments using a small number of future
climate projections based on GCMs is that the estimated impacts of
climate change depend heavily on the GCMs used. The large SDCP

values in Table 6—especially in the 2080s—are indicative of this
heavy dependence. To examine the relationship between depen-
dence of estimates and the number of GCMs used, we estimated
ACP values using 3, 5, or 10 GCMs. Fig. 8 shows the probability
density distributions obtained for ACP by using all combinations of
3, 5, or 10 GCMs for A1B in the 2080s. The results revealed that
there was large dependence of ACP on GCMs used when few GCMs
were used. We consider that the comprehensive consideration of
the process/parameter uncertainty in GCMs using a large number
of future climate projections of GCMs, as we have done here, is a
way of overcoming this problem to give reliable estimates of the
impact of climate change.

4.2. Uncertainty in the impact of climate change

We quantified the part of the uncertainty of the impact of
climate change that was associated with the process/parameter
uncertainty in GCMs. No studies have quantified the uncertainty
for each SRES scenario from the near future to the distant future in
comprehensive consideration of the process/parameter uncer-
tainty in GCMs, although Lobell et al. (2008) quantified the
uncertainty in the near future (in 2030) without distinguishing the
uncertainty for each SRES scenario. The uncertainties quantified
here are shown as the SDCP values in Table 6. The SDCP values for all
SRES scenarios increased over time. These increases in the SDCP

values can be attributed to increases in the process/parameter
uncertainty in GCMs over time (Cox and Stephenson, 2007).
However, importantly, there were large differences in the SDCP

values for the 2080s among the SRES scenarios: a lower CO2

concentration brought lower uncertainty in the impact of climate
change in the 2080s. There were also large differences in the ACP

and PPD values in the 2080s among the SRES scenarios (Table 6). In
addition, a lower CO2 concentration brought less adverse impact
(i.e., smaller negative ACP values and lower PPD values; see Table 6).
These results suggest that a reduction in CO2 emissions in the long

Fig. 6. Average change in production (ACP) in Asia without the CO2 fertilization
effect.

Fig. 7. Average change in production (ACP) in Asia with the CO2 fertilization effect.
Error bars indicate standard deviation of changes in production (i.e., SDCP).

Table 6
ACP without the CO2 fertilization effect; ACP, SDCP, and PPD (CP < 0) with the CO2 fertilization effect (units are % for all values).

1990s–2020s 1990s–2050s 1990s–2080s

A1B A2 B1 A1B A2 B1 A1B A2 B1

ACP without CO2 effect "5.2 "6.3 "4.2 "8.6 "9.4 "5.4 "16.8 "22.0 "8.4
ACP "3.3 "4.5 "2.5 "0.3 "0.9 "0.2 "5.0 "9.9 "0.5
SDCP 3.2 3.2 3.1 3.9 3.7 3.3 7.2 8.4 4.8
PPD (CP < 0) 83.3 100.0 76.5 44.4 57.1 52.9 72.2 85.7 47.1

Y. Masutomi et al. / Agriculture, Ecosystems and Environment 131 (2009) 281–291288



Next	  step	  is…	
•  How	  to	  adapt?	  
– Local	  problem	  
• We	  must	  consider	  local	  rice	  varie7es.	  
•  Different	  rice	  varie7es	  have	  different	  responses	  to	  high	  
temperature.	  
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写真1 サーモグラフィーによる登熟期の群落表面温度  

 

 

連絡先 水田農業研究所 育種担当 電話 048-521-5041 
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図1 最近育成された品種の高温登熟性検定結果（平24）
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図2 「彩のきずな」県内産の玄米品質（整粒比）ヒストグラム

実証圃

n=33

奨決現地

n=27

累積 %

光合成有効放射 葉表面温度 蒸散速度 気孔コンダクタンス 光合成速度 葉肉CO2濃度

W　m
-2 ℃ mmol m-2s-1 mmol m-2s-1 μ mol-2 mol-1 μ mol mol-1

彩のきずな 1343.5 34.5 10.4 488.7 25.7 255.9

キヌヒカリ 1370.9 35.4 8.6 339.5 22.3 236.1

t 検定 n.s. ** ** ** ** **

品種名

表1　出穂期の「彩のきずな」の光合成特性

Perfect	  grain	

Ra7o	  of	  perfect	  grains	  under	  high	  air	  temperature	  experiments	

Imperfect	  grain	

Sa
i-‐n

o-‐
ki
zu
na
	

Ki
nu

hi
ka
ri	

Arakawa	  et	  al.	  (2014)	



How	  to	  simulate	  the	  difference?	
•  Leaf	  temperature	  
–  	  is	  one	  of	  key	  factors	  for	  the	  different	  response	  
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図2 「彩のきずな」県内産の玄米品質（整粒比）ヒストグラム

実証圃

n=33

奨決現地

n=27

累積 %

光合成有効放射 葉表面温度 蒸散速度 気孔コンダクタンス 光合成速度 葉肉CO2濃度

W　m
-2 ℃ mmol m-2s-1 mmol m-2s-1 μ mol-2 mol-1 μ mol mol-1

彩のきずな 1343.5 34.5 10.4 488.7 25.7 255.9

キヌヒカリ 1370.9 35.4 8.6 339.5 22.3 236.1

t 検定 n.s. ** ** ** ** **

品種名

表1　出穂期の「彩のきずな」の光合成特性

Sai-‐no-‐kizuna	 Kinuhikari	

Heading	  stage	

Same	  condi7ons	  including	  weather,	  but	  
different	  leaf	  temperature	

Arakawa	  et	  al.	  (2014)	



How	  to	  simulate	  leaf	  temperature?	

•  Basically,	  temperature	  of	  any	  objects	  is	  determined	  
by	  input	  and	  output	  of	  energy.	  

T?	
energy	 energy	

Ta!	

Leaf	  temperature	  can	  be	  simulated	  by	  energy	  balance	  
of	  the	  crop.	  



Requirement	  #1	  
	  

Energy	  balance	  is	  simulated	  
to	  determine	  leaf	  temperature	



Impact	  of	  Ozone	
Įĺőę��Xí�

Įĺőè*�
ŕræęT;Įĺő�VôöôúúùŖ�

âDęĮĺő�@�
ŕræęT;Įĺő�Vô÷øôúúùŖ�

Įĺőè*%Ė�ĝü�
-ãĚ³õ÷Ŕ�P�

Ozone	  reduces	  crop	  produc7vity	

2ppb	 36ppb	<<	
(Provided	  by	  Dr.	  Yonekura	  (CESS))	



Future	  impacts	  of	  Ozone	

Asia (þ11%), the EU25 (þ7.0%), and Africa and the Middle East
(þ6.2%). Additional RYL of maize is projected to occur primarily in
South and East Asia (þ6.8 and þ4.7%, respectively), but with
increased losses of wþ3% also estimated for the EU25 and Eastern
Europe.

3.2.2. RYL year 2030 e B1
Fig. 4 depicts the global distribution of national RYL for each

crop and metric in 2030 under the B1 scenario, while Table 4
presents regionally aggregated and global RYL results. O3-induced
RYL of wheat is greatest in Bangladesh (15e65%), India (10e37%),
Iraq (10e33%), Jordan (10e30%), and Saudi Arabia (10e29%). RYL in
Bangladesh is again calculated to be extremely high, as O3 exposure
is projected to be only slightly lower than under the A2 scenario
(35e40 ppmh). Soybean RYL in the B1 scenario is projected to be
greatest in China (31e32%), South Korea (26e28%), Canada
(24e26%), Italy (20e25%), and Pakistan (18e24%). The highest
estimated yield loss of maize is expected to occur in the DRC
(8.7e16%), India (6.3e12%), Pakistan (6.3e12%), China (5.8e10%),
and Italy (5.1e10%). On a global scale, RYL totals 4.0e17% for wheat,
10e15% for soybean, and 2.5e6.0% for maize under the B1 scenario
(Table 4).

Table S2 lists the projected change in regionally and globally
aggregated RYL estimates for 2030 under the B1 scenario relative to
2000. Globally, O3-induced RYL in this more optimistic future is
estimated to worsen only slightly from 2000 levels with yields
reduced an additional þ0.1e1.8% for wheat, þ0.7e1.0% for soybean,

and þ0.3e0.5% for maize. Regional discrepancies are apparent,
however, due to differences in projected O3 precursor emissions
among industrialized versus emerging economies. Year 2030wheat
yields decrease in South Asia by þ4.1% on average, with less severe
additional losses (wþ1e2%) predicted for other developing regions
(Latin America, East Asia, and Africa and the Middle East). North
America and the EU25 are projected to experience yield gains of
wheat as compared to the year 2000 (change in RYL of "1.7% and
"0.8%, respectively). Additional yield reductions of soybean are
projected to occur primarily in East and South Asia (þ8.2 and
þ4.9%, respectively), with increased losses of wþ2% also estimated
for Latin America and Africa and the Middle East. Soybean yield
gains (change in RYL of "2 to "3%) are projected for the EU25 and
North America. South and East Asia are further expected to suffer
additional maize losses under the B1 scenario (þ3.5% and þ2.2%,
respectively); maize RYL in other regions remains largely
unchanged from the year 2000.

3.3. Crop production loss (CPL) and associated economic losses (EL)

3.3.1. CPL and EL year 2030 e A2
The combined year 2030 global crop production and economic

losses due to O3 exposure under the A2 scenario are illustrated in
Fig. 5. Figs. 6 and 7 depict the change in CPL and EL, respectively, for
the ten countries with the greatest absolute difference (2030 A2 e
2000) for each crop individually and combined. The change in
regionally aggregated and global CPL for each crop, as well as
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Fig. 6. Change in crop production loss (CPL, million metric tons) for the ten countries with highest absolute difference in estimated mean CPL between 2000 and 2030 under the A2
scenario using the M12 and AOT40 metrics for a) soybean, b) maize, c) wheat, and d) total CPL.
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interactions between a changing climate, stomatal conductance,
ozone uptake and plant productivity.

We use spatially explicit [O3] fields derived from the STOCHEM
model19 to drive the modified MOSES-TRIFFID land-surface
scheme17 offline. Two model versions are applied, with ‘high’ and
‘low’ plant ozone sensitivity based on observations16,20. For model
evaluation against global carbon cycle budgets, simulations are con-
ducted for the period 1901–2002, using a monthly observational data
set of the twentieth-century climate21, changing monthly fields of
diurnal mean [O3] and prescribed annual fields of global atmospheric
[CO2]. As a further model evaluation, a second set of simulations
replicates the Aspen FACE experiment6,13 and the free-air O3 fumiga-
tion experiment at a Swiss grassland site14. The Aspen FACE experi-
ment investigates the response of maturing aspen stands across a wide
range of O3 sensitivity in five aspen clones. Plots were planted in 1997
and exposed for seven years to combinations of ambient and elevated
concentrations of [CO2] and [O3], with elevated [CO2] at 560 p.p.m.v.,
and elevated [O3] at 1.5 times ambient levels. In the grassland experi-
ments, plots are exposed for 5 years to ambient and elevated [O3] at 1.5
times ambient levels. Our simulations broadly agree with the results
from these free air enrichment Swiss grassland and aspen experi-
ments6,13,14 (see Supplementary Fig. 3), and an ozone risk mapping
for North America derived from the Aspen FACE results15.

A third set of factorial simulations is conducted from 1901 to 2100
with changing fields of monthly near-surface tropospheric ozone and
atmospheric CO2 concentrations consistent with the A2 SRES scen-
ario. A fixed mean monthly pre-industrial climate is prescribed in
these runs, in order to focus on the interaction between direct CO2

and O3 effects on plant physiology. For each of the ‘high’ and ‘low’
ozone plant sensitivity parameterizations, three simulations are con-
ducted with combinations of fixed pre-industrial and prescribed
changing fields of [O3] and global atmospheric [CO2].

Over the 1990s, global mean land–atmosphere fluxes of
21.34 Pg C yr21 and 21.74 Pg C yr21 are simulated for the ‘high’

and ‘low’ plant O3 sensitivity models, respectively, both within the
IPCC range22 of 24.3 Pg C yr21 to 20.9 Pg C yr21 with a mean of
22.6 Pg C yr21 (Supplementary Table 2). Figure 1 shows the impact
of O3 increases on the pattern of gross primary productivity (GPP) by
2100. The lower panels show the percentage change in GPP due to O3 in
the model runs with fixed pre-industrial CO2. Over the period 1901–
2100, global GPP is projected to decrease by 14–23% owing to plant
ozone damage (Supplementary Table 3), with regional reductions
above 30% (Fig. 1). Large reductions in GPP and land-carbon storage
are projected over North America, Europe, China and India, regions
with the highest levels of human appropriation of primary productiv-
ity23, and in tropical ecosystems, raising important issues concerning the
vulnerability of regional ecosystem services (for example, food security,
forest productivity and carbon sequestration)24 to changes in air quality.

The combined effect of elevated future [CO2] and [O3] on plant
physiology is an increase in global GPP and net land carbon uptake
(Table 1). However, the enhancement in global GPP at 2100, by the

Table 1 | Simulated changes in the global land carbon cycle due to O3 and
CO2 increases

Model GPP
(Pg C yr21)

Veg. C
(Pg C)

Soil C
(Pg C)

Land C
(Pg C)

‘High’ plant O3 sensitivity
Value in 1901 112.7 461.8 1,110.8 1,572.6
D Value (2100–1901)
D[CO2], fixed [O3] 88.4 235.0 621.7 856.7
Fixed [CO2], D[O3] 226.4 289.1 2173.4 2262.5
D[CO2] and D[O3] 58.4 184.8 432.7 617.5

‘Low’ plant O3 sensitivity
Value in 1901 116.6 488.2 1,130.2 1,618.4
D Value (2100–1901)
D[CO2], fixed [O3] 86.9 217.5 618.3 835.8
Fixed [CO2], D[O3] 216.1 231.9 2111.3 2143.2
D[CO2] and D[O3] 71.3 201.9 513.8 715.6

Shown are changes (D) in global gross primary production (GPP) and global carbon stocks in
vegetation (Veg.) and soils between 1901 and 2100.
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Figure 1 | Temporal changes of modelled ozone concentrations and gross
primary productivity. a, b, Modelled diurnal (24-h) mean surface [O3] in
p.p.b. averaged over June, July and August (JJA) for the present day (a) and
the year 2100 under the SRES A2 emissions scenario (b). c, d, Simulated

percentage change in gross primary productivity (GPP) between 1901 and
2100 due to O3 effects at fixed pre-industrial atmospheric [CO2] for ‘low’
(c) and ‘high’ (d) ozone plant sensitivity.
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Threat to future global food security from climate
change and ozone air pollution
Amos P. K. Tai1*†, Maria Val Martin2,3 and Colette L. Heald1,4

Future food production is highly vulnerable to both climate
change and air pollution with implications for global food
security1–4. Climate change adaptation and ozone regulation
have been identified as important strategies to safeguard
food production5,6, but little is known about how climate
and ozone pollution interact to a�ect agriculture, nor the
relative e�ectiveness of these two strategies for di�erent
crops and regions. Here we present an integrated analysis of
the individual and combined e�ects of 2000–2050 climate
change and ozone trends on the production of four major crops
(wheat, rice,maize and soybean)worldwidebasedonhistorical
observations and model projections, specifically accounting
for ozone–temperature co-variation. The projections exclude
the e�ect of rising CO2, which has complex and potentially
o�setting impacts on global food supply7–10. We show that
warming reduces global crop production by >10% by 2050
with a potential to substantially worsen global malnutrition
in all scenarios considered. Ozone trends either exacerbate
or o�set a substantial fraction of climate impacts depending
on the scenario, suggesting the importance of air quality
management in agricultural planning. Furthermore, we find
that depending on region some crops are primarily sensitive
to either ozone (for example, wheat) or heat (for example,
maize) alone, providing a measure of relative benefits of
climate adaptation versus ozone regulation for food security
in di�erent regions.

Global demand for food is expected to increase by at least 50%
from2010 to 2050mainly as a result of population growth and a shift
towards amore ‘westernized’ diet in developing regions11. Assuming
that agricultural production is able to meet the growing demand
through a combination of economic growth and agricultural
advancements, undernourishment rates in developing countries are
projected to decline substantially11. Future production is, however,
sensitive to both climate change and air pollution. Temperature
extremes are highly damaging to various major crops1,2,5. Surface
ozone, formed through the photochemistry of precursor gases
mainly arising from human activities, is phytotoxic and detrimental
to crop yields4,12,13. Climate adaptation and ozone regulation have
thus been identified as importantmeasures to tackle food insecurity,
but their relative benefits for di�erent crops and regions remain
largely uncertain.

In this study, we quantify the individual and combined e�ects
of 2000–2050 mean temperature and ozone pollution trends on the
global production ofwheat, rice,maize and soybean and then on un-
dernourishment rates in developing countries as a necessary input to
policy formulation for food security. Figure 1 illustrates a roadmap

for our methodology and summarizes our results. First, we use the
Community Earth System Model (CESM) to simulate present-day
(2000) and derive future (2050) projections of hourly temperature
and ozone concentration consistent with the representative con-
centration pathways (RCPs) represented in the Intergovernmental
Panel on Climate Change Fifth Assessment Report14,15 (AR5). Our
future ozone projections not only follow trends in anthropogenic
emissions of precursor gases but also include the e�ects of climate
and land use changes; these confounding factors are known to sig-
nificantly impact future ozone projections16,17 but are not considered
in previous crop impact studies.We consider two scenarios: RCP4.5,
representing an intermediate pathway with a global reduction in
surface ozone due to pollution control measures worldwide (except
in South Asia)14; and RCP8.5, representing a more ‘pessimistic’,
energy-intensive pathwaywith aworldwide increase in ozone except
in the US and around Japan18 (Supplementary Fig. 1). The two sce-
narios represent a range of policy options regarding ozone regula-
tion. Both scenarios project a global increase in surface temperature
(Supplementary Fig. 1), with similar e�ects on crop production as
discussed below. Previous historical crop–temperature impact anal-
yses5,19 suggest a substantial potential for crop-level adaptation to
avoid losses fromwarming, but they do not consider the concurrent
impacts of changing ozone levels that may o�set the benefits of
adaptation12. We therefore exclude adaptation in our projections,
and focus on the potential of ozone regulation to combat the warm-
ing impacts. Other environmental factors such as water scarcity
and land degradation may influence future food production but are
outside the scope of this study.

From the CESM-simulated results we derive various metrics to
parameterize the influence of climate change and ozone pollution
on crop production: growing degree days (GDDs) and killing degree
days (KDDs) for climate, and di�erent ozone exposure indices for
ozone (Methods). Changes in production due to climate and ozone
trends for each CESM grid cell and each crop, 1P , are represented
as a function of current production, P , by

1P=gP
�
�c�p �1

�
(1)

where g is the production growth factor accounting for technology-
driven yield improvements and cropland area changes; �c and
�p are scaling factors capturing the e�ects of climate change
and ozone pollution, respectively, based on observed relationships
of crop yields with agro-climatic and ozone exposure metrics.
The individual climate (or pollution) e�ect is represented by 1P
but omitting the other factor �p (or �c) in equation (1). The
growth factor g for 2050 is based on estimates from the Food
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Figure 1 | Methodology and results. Using CESM, we derive future (2050) projections for ozone exposure indices and agro-climatic variables, which are
used to estimate subsequent e�ects on total annual crop productivity based on statistical crop–ozone and crop–climate relationships. E�ects are expressed
as the sum of 1P in equation (1) per unit harvested area multiplied by equivalent food energy for all four major crops (wheat, rice, maize, soybean).
a–f, Changes following 2000–2050 RCP4.5 (a–c) and RCP8.5 (d–f) anthropogenic emissions and land use scenario. a and d represent e�ects of ozone
trends alone, b and e e�ects of climate change alone, and c and f represent combined e�ects. In the purple rectangles below a–f are global total e�ects
(
P

1P⇥A over all grid cells, where A is harvested area). Here we use current production as the baseline (g= 1) with global total of 7.09⇥ 1015 kcal yr�1;
see Supplementary Table 5 for results based on 2050 projections. g, Shift in distribution of per capita dietary energy supply (DES) in developing countries
(by 2000 definition) following 2000–2050 ozone and temperature changes (for RCP8.5 as an example). Shaded in colour is the proportion of population
consuming below the minimum dietary energy requirement (MDER).

and Agriculture Organization11 (FAO; see Methods). Crop–ozone
responses are based on an ensemble of statistical relationships
represented in the literature. For crop–temperature responses, we
develop a constrained linear regression model to quantify the
sensitivities of relative crop yield to GDD and KDD for di�erent
regions worldwide based on historical observations from 1960 to
2000 (Methods). The correlations with other climate variables such
as precipitation are partially encapsulated in these agro-climatic
variables (Supplementary Methods). In general, for each crop we
find strong but spatially varying responses to both GDD and KDD,
probably due to cultivar di�erences5. We observe globally a strong
trend of increasing sensitivity to excess heat from warmer to colder
regions (in terms of growing season temperature) for wheat, maize
and soybean, reflecting a spatial gradation of heat tolerance and
local climate adaptability (Supplementary Fig. 5). The observed
sensitivity for US maize is generally consistent with ref. 5.

Ozone formation is strongly correlated with temperature16, so
the observed crop–temperature relationships may arise in part from

ozone damage at high temperature instead of warming per se.
Previous studies1,5,19 typically do not consider this confounding
e�ect. We specifically correct for ozone–temperature co-variation
(Methods), and find that on average, 24%, 44%, 9.8% and 46%
of the observed sensitivities to KDD for wheat, rice, maize and
soybean, respectively, arise from higher ozone associated with high
KDD (albeit greater uncertainty for rice). We use the corrected
sensitivities to estimate future crop–temperature responses.

Figure 1a–f represents the individual and combined e�ects of
climate change and ozone pollution on total crop production for
both the RCP4.5 and RCP8.5 scenarios, expressed as the sum
of 1P per unit harvested area multiplied by the equivalent food
energy for all four crops (Supplementary Table 2). We find that the
e�ects of ozone pollution on crop production are highly dependent
on the scenario. On a global scale, more severe ozone pollution
expected for RCP8.5 leads to substantial crop damage (except in
the US and South Korea) reducing global total crop production by
3.6% (Fig. 1d), but aggressive pollution control worldwide expected
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Figure 1 | Methodology and results. Using CESM, we derive future (2050) projections for ozone exposure indices and agro-climatic variables, which are
used to estimate subsequent e�ects on total annual crop productivity based on statistical crop–ozone and crop–climate relationships. E�ects are expressed
as the sum of 1P in equation (1) per unit harvested area multiplied by equivalent food energy for all four major crops (wheat, rice, maize, soybean).
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see Supplementary Table 5 for results based on 2050 projections. g, Shift in distribution of per capita dietary energy supply (DES) in developing countries
(by 2000 definition) following 2000–2050 ozone and temperature changes (for RCP8.5 as an example). Shaded in colour is the proportion of population
consuming below the minimum dietary energy requirement (MDER).

and Agriculture Organization11 (FAO; see Methods). Crop–ozone
responses are based on an ensemble of statistical relationships
represented in the literature. For crop–temperature responses, we
develop a constrained linear regression model to quantify the
sensitivities of relative crop yield to GDD and KDD for di�erent
regions worldwide based on historical observations from 1960 to
2000 (Methods). The correlations with other climate variables such
as precipitation are partially encapsulated in these agro-climatic
variables (Supplementary Methods). In general, for each crop we
find strong but spatially varying responses to both GDD and KDD,
probably due to cultivar di�erences5. We observe globally a strong
trend of increasing sensitivity to excess heat from warmer to colder
regions (in terms of growing season temperature) for wheat, maize
and soybean, reflecting a spatial gradation of heat tolerance and
local climate adaptability (Supplementary Fig. 5). The observed
sensitivity for US maize is generally consistent with ref. 5.

Ozone formation is strongly correlated with temperature16, so
the observed crop–temperature relationships may arise in part from

ozone damage at high temperature instead of warming per se.
Previous studies1,5,19 typically do not consider this confounding
e�ect. We specifically correct for ozone–temperature co-variation
(Methods), and find that on average, 24%, 44%, 9.8% and 46%
of the observed sensitivities to KDD for wheat, rice, maize and
soybean, respectively, arise from higher ozone associated with high
KDD (albeit greater uncertainty for rice). We use the corrected
sensitivities to estimate future crop–temperature responses.

Figure 1a–f represents the individual and combined e�ects of
climate change and ozone pollution on total crop production for
both the RCP4.5 and RCP8.5 scenarios, expressed as the sum
of 1P per unit harvested area multiplied by the equivalent food
energy for all four crops (Supplementary Table 2). We find that the
e�ects of ozone pollution on crop production are highly dependent
on the scenario. On a global scale, more severe ozone pollution
expected for RCP8.5 leads to substantial crop damage (except in
the US and South Korea) reducing global total crop production by
3.6% (Fig. 1d), but aggressive pollution control worldwide expected
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as the sum of 1P in equation (1) per unit harvested area multiplied by equivalent food energy for all four major crops (wheat, rice, maize, soybean).
a–f, Changes following 2000–2050 RCP4.5 (a–c) and RCP8.5 (d–f) anthropogenic emissions and land use scenario. a and d represent e�ects of ozone
trends alone, b and e e�ects of climate change alone, and c and f represent combined e�ects. In the purple rectangles below a–f are global total e�ects
(
P

1P⇥A over all grid cells, where A is harvested area). Here we use current production as the baseline (g= 1) with global total of 7.09⇥ 1015 kcal yr�1;
see Supplementary Table 5 for results based on 2050 projections. g, Shift in distribution of per capita dietary energy supply (DES) in developing countries
(by 2000 definition) following 2000–2050 ozone and temperature changes (for RCP8.5 as an example). Shaded in colour is the proportion of population
consuming below the minimum dietary energy requirement (MDER).

and Agriculture Organization11 (FAO; see Methods). Crop–ozone
responses are based on an ensemble of statistical relationships
represented in the literature. For crop–temperature responses, we
develop a constrained linear regression model to quantify the
sensitivities of relative crop yield to GDD and KDD for di�erent
regions worldwide based on historical observations from 1960 to
2000 (Methods). The correlations with other climate variables such
as precipitation are partially encapsulated in these agro-climatic
variables (Supplementary Methods). In general, for each crop we
find strong but spatially varying responses to both GDD and KDD,
probably due to cultivar di�erences5. We observe globally a strong
trend of increasing sensitivity to excess heat from warmer to colder
regions (in terms of growing season temperature) for wheat, maize
and soybean, reflecting a spatial gradation of heat tolerance and
local climate adaptability (Supplementary Fig. 5). The observed
sensitivity for US maize is generally consistent with ref. 5.

Ozone formation is strongly correlated with temperature16, so
the observed crop–temperature relationships may arise in part from

ozone damage at high temperature instead of warming per se.
Previous studies1,5,19 typically do not consider this confounding
e�ect. We specifically correct for ozone–temperature co-variation
(Methods), and find that on average, 24%, 44%, 9.8% and 46%
of the observed sensitivities to KDD for wheat, rice, maize and
soybean, respectively, arise from higher ozone associated with high
KDD (albeit greater uncertainty for rice). We use the corrected
sensitivities to estimate future crop–temperature responses.

Figure 1a–f represents the individual and combined e�ects of
climate change and ozone pollution on total crop production for
both the RCP4.5 and RCP8.5 scenarios, expressed as the sum
of 1P per unit harvested area multiplied by the equivalent food
energy for all four crops (Supplementary Table 2). We find that the
e�ects of ozone pollution on crop production are highly dependent
on the scenario. On a global scale, more severe ozone pollution
expected for RCP8.5 leads to substantial crop damage (except in
the US and South Korea) reducing global total crop production by
3.6% (Fig. 1d), but aggressive pollution control worldwide expected
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and Agriculture Organization11 (FAO; see Methods). Crop–ozone
responses are based on an ensemble of statistical relationships
represented in the literature. For crop–temperature responses, we
develop a constrained linear regression model to quantify the
sensitivities of relative crop yield to GDD and KDD for di�erent
regions worldwide based on historical observations from 1960 to
2000 (Methods). The correlations with other climate variables such
as precipitation are partially encapsulated in these agro-climatic
variables (Supplementary Methods). In general, for each crop we
find strong but spatially varying responses to both GDD and KDD,
probably due to cultivar di�erences5. We observe globally a strong
trend of increasing sensitivity to excess heat from warmer to colder
regions (in terms of growing season temperature) for wheat, maize
and soybean, reflecting a spatial gradation of heat tolerance and
local climate adaptability (Supplementary Fig. 5). The observed
sensitivity for US maize is generally consistent with ref. 5.

Ozone formation is strongly correlated with temperature16, so
the observed crop–temperature relationships may arise in part from

ozone damage at high temperature instead of warming per se.
Previous studies1,5,19 typically do not consider this confounding
e�ect. We specifically correct for ozone–temperature co-variation
(Methods), and find that on average, 24%, 44%, 9.8% and 46%
of the observed sensitivities to KDD for wheat, rice, maize and
soybean, respectively, arise from higher ozone associated with high
KDD (albeit greater uncertainty for rice). We use the corrected
sensitivities to estimate future crop–temperature responses.

Figure 1a–f represents the individual and combined e�ects of
climate change and ozone pollution on total crop production for
both the RCP4.5 and RCP8.5 scenarios, expressed as the sum
of 1P per unit harvested area multiplied by the equivalent food
energy for all four crops (Supplementary Table 2). We find that the
e�ects of ozone pollution on crop production are highly dependent
on the scenario. On a global scale, more severe ozone pollution
expected for RCP8.5 leads to substantial crop damage (except in
the US and South Korea) reducing global total crop production by
3.6% (Fig. 1d), but aggressive pollution control worldwide expected
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Crop	  physiological	  interac7on	

A	  stomatal	  response	  model	  should	  be	  included.	  

O3�

•  High	  CO2	  concentra7on	  tends	  to	  close	  stoma	  
•  O3	  uptake	  will	  reduce	  →	  reduce	  ozone	  damage	  

•  High	  O3	  concentra7on	  tends	  to	  close	  stoma	  
•  CO2	  uptake	  will	  reduce	  →	  reduce	  photosynthesis	  	  

	  	

Both	  CO2	  and	  O3	  are	  taken	  up	  into	  
leaf	  through	  stoma.	  	

What	  will	  happen	  under	  High	  CO2	  and	  O3	  concentra7on?	



Requirement	  #2	  
	  

Stomatal	  response	  should	  be	  included	



So,	  I	  am	  developing	  MATCRO…	

•  MATCRO	  has	  two	  components	  
– Land	  surface	  model	  	  
•  Simulates	  heat	  and	  water	  fluxes	  (energy	  balance)	  
•  Includes	  a	  stomatal	  response	  model	  
•  is	  based	  on	  MATSIRO	  (Takata	  et	  al.,	  2003)	  

– MATSIRO	  is	  a	  component	  of	  climate	  models	  

– Crop	  model	  
•  Phenology	  and	  Par77oning	  models	

MATSIRO	  +	  Crop	  =	  MATCRO	



Structure	  of	  MATCRO	

GPP# Glucose#
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Leaf#biomass� Stem#
biomass�

Root#
biomass�

Storage#
biomass�

Starch##
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Dead#leaf�

Leaf# Stem# Root# Storage#

Maintenance#Respira<on�

Growth#Respira<on�
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LAI,#Height#

Root#
DVI�

DVR�

Temperature� Sunshine#dura<on�

Assimilate#Par<<oning#module� DVI#module�



Simula7on	  results	



Model	  test	  site	  	  	  -‐Mase-‐	

•  Observa7on：climate	  variables,	  sensible	  and	  latent	  
heat	  fluxes,	  CO2	  and	  CH4	  fluxes,	  biomass	  for	  each	  
organ,	  LAI,	  etc..	  

•  Variety:	  Koshihikari	



	  -‐Total	  Biomass-‐	



-‐Panicle	  (Yields)	  biomass-‐	



-‐Latent	  heat	  flux-‐	  	  
(evapora7on	  and	  transpira7on)	



Heat	  flux	  into	  ground	



Summary	  	

•  A	  new	  type	  of	  crop	  model	  has	  been	  developed	  
– MATCRO	  
•  is	  a	  LSM	  combined	  with	  a	  crop	  model	  

•  MATCRO	  can	  reproduce	  well	  
– Biomass	  
– heat	  fluxes	  
•  Leaf	  temperature	  must	  be	  reproduced	  well	



Challenges	

•  Ozone	  response	  and	  interac7on	  with	  CO2	  

•  Global	  applica7on	  
– Global	  parameteriza7on	  
•  Phenology	  model	  and	  par77oning	  model	  

– Nitrogen	  dynamics	



Thank	  you	  for	  your	  aoen7on!	



Parameteriza7on	  	  -‐Par77oning-‐	

Dead	  leaf	 Specific	  leaf	  weight	



-‐Sensible	  heat	  flux-‐	



Parameteriza7on	



Parameteriza7on	  I　-‐Phenology-‐	

•  The	  method	  of	  Growing	  degree	  days(GDDs)	  is	  used.	  
–  GDDs	  are	  summa7on	  of	  air	  temperatures	  over	  growing	  
periods	  



-‐Leaf	  biomass-‐	



The	  impact	  of	  changes	  in	  diffuse	  
radia7on	  on	  crops	

•  Diffuse-‐radia7on	  fer7liza7on	  effect	  
–  Surface	  radia7on	  has	  two	  components	  of	  Direct	  and	  Diffuse	  
–  Crops	  can	  use	  diffuse	  radia7on	  more	  efficiently	  than	  direct	  radia7on	  
–  Higher	  frac7on	  of	  diffuse	  radia7on	  increase	  crop	  produc7vity.	  

•  High	  concentra7on	  of	  aerosols	  decrease	  total	  radia7on	  but	  increase	  
the	  frac7on	  of	  diffuse	  radia7on.	  

LETTERS

Impact of changes in diffuse radiation on the global
land carbon sink
Lina M. Mercado1, Nicolas Bellouin2, Stephen Sitch2, Olivier Boucher2, Chris Huntingford1, Martin Wild3

& Peter M. Cox4

Plant photosynthesis tends to increase with irradiance. However,
recent theoretical and observational studies have demonstrated
that photosynthesis is also more efficient under diffuse light
conditions1–5. Changes in cloud cover or atmospheric aerosol load-
ings, arising from either volcanic or anthropogenic emissions,
alter both the total photosynthetically active radiation reaching
the surface and the fraction of this radiation that is diffuse, with
uncertain overall effects on global plant productivity and the land
carbon sink. Here we estimate the impact of variations in diffuse
fraction on the land carbon sink using a global model modified to
account for the effects of variations in both direct and diffuse
radiation on canopy photosynthesis. We estimate that variations
in diffuse fraction, associated largely with the ‘global dimming’
period6–8, enhanced the land carbon sink by approximately one-
quarter between 1960 and 1999. However, under a climate mitiga-
tion scenario for the twenty-first century in which sulphate
aerosols decline before atmospheric CO2 is stabilized, this
‘diffuse-radiation’ fertilization effect declines rapidly to near zero
by the end of the twenty-first century.

The solar radiation reaching the Earth’s surface is the primary driver
of plant photosynthesis. Leaf photosynthesis increases nonlinearly with
incident photosynthetically active radiation (PAR), saturating at light
levels that are often exceeded on bright days during the growing season
(Fig. 1). Under clear-sky conditions, a fraction of the plant canopy is
illuminated by direct solar radiation consisting of bright ‘sunflecks’,
with the remaining portion of the canopy being in the shade. The sunlit
fraction of the canopy has leaves that are often light saturated and
therefore have low light-use efficiency, whereas leaves in the shade
are more light-use efficient but suffer from a lower exposure to incom-
ing radiation. In contrast, under cloudy or aerosol-laden skies, sunlight
is more scattered and incoming radiation is more diffuse, producing a
more uniform irradiance of the canopy with a smaller fraction of the
canopy likely to be light saturated. As a result, canopy photosynthesis
tends to be significantly more light-use efficient under diffuse sunlight
than under direct sunlight3. Hence, the net effect on photosynthesis of
radiation changes associated with an increase in clouds or scattering
aerosols depends on a balance between the reduction in total PAR
(which tends to reduce photosynthesis) and the increase in the diffuse
fraction of the PAR (which tends to increase photosynthesis).
Although some global climate/carbon-cycle models include the effects
of atmospheric aerosols on total irradiance and surface temperature
(see, for example, ref. 9), none has accounted for the effects of clouds
and aerosols on the land carbon sink through changes in the diffuse
fraction of radiation.

To account for the effects of diffuse radiation on canopy photosyn-
thesis, we modified the JULES land-surface scheme used in the
Hadley Centre climate models10. JULES includes a multilayer

approach to scale photosynthesis from the leaf to the canopy. In this
study, we also separated each canopy layer into sunlit and shaded
regions11. Figure 1 shows a comparison of the simulated light
response of the gross primary productivity (GPP) with measure-
ments inferred from the eddy correlation technique under direct
and diffuse irradiance conditions within a broadleaf temperate
forest12 and a needleleaf temperate forest13. The modified JULES

1Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK. 2Met Office Hadley Centre, Exeter EX1 3PB, UK. 3ETH Zurich, Institute for Atmospheric and Climate Science, CH 8092
Zurich, Switzerland. 4School of Engineering, Computer Science and Mathematics, University of Exeter, Exeter EX4 4QF, UK.
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Figure 1 | JULES model evaluation against observations. Observed and
modelled light response of the GPP to both direct and diffuse PAR (open
triangles and filled circles, respectively) averaged over bins of 200 mmol
quanta per square metre per second: a, broadleaf forest site; b, needleleaf
forest site. For the purposes of this validation, data points are split into
‘diffuse’ and ‘direct’ conditions, using diffuse fractions of greater than 80%
and less than 25% to discriminate between these two cases. Measurements
inferred from eddy correlation are given in black (error bars, 1 s.d.), and
simulations are given in pink (Methods).
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Impact of changes in diffuse radiation on the global
land carbon sink
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& Peter M. Cox4

Plant photosynthesis tends to increase with irradiance. However,
recent theoretical and observational studies have demonstrated
that photosynthesis is also more efficient under diffuse light
conditions1–5. Changes in cloud cover or atmospheric aerosol load-
ings, arising from either volcanic or anthropogenic emissions,
alter both the total photosynthetically active radiation reaching
the surface and the fraction of this radiation that is diffuse, with
uncertain overall effects on global plant productivity and the land
carbon sink. Here we estimate the impact of variations in diffuse
fraction on the land carbon sink using a global model modified to
account for the effects of variations in both direct and diffuse
radiation on canopy photosynthesis. We estimate that variations
in diffuse fraction, associated largely with the ‘global dimming’
period6–8, enhanced the land carbon sink by approximately one-
quarter between 1960 and 1999. However, under a climate mitiga-
tion scenario for the twenty-first century in which sulphate
aerosols decline before atmospheric CO2 is stabilized, this
‘diffuse-radiation’ fertilization effect declines rapidly to near zero
by the end of the twenty-first century.

The solar radiation reaching the Earth’s surface is the primary driver
of plant photosynthesis. Leaf photosynthesis increases nonlinearly with
incident photosynthetically active radiation (PAR), saturating at light
levels that are often exceeded on bright days during the growing season
(Fig. 1). Under clear-sky conditions, a fraction of the plant canopy is
illuminated by direct solar radiation consisting of bright ‘sunflecks’,
with the remaining portion of the canopy being in the shade. The sunlit
fraction of the canopy has leaves that are often light saturated and
therefore have low light-use efficiency, whereas leaves in the shade
are more light-use efficient but suffer from a lower exposure to incom-
ing radiation. In contrast, under cloudy or aerosol-laden skies, sunlight
is more scattered and incoming radiation is more diffuse, producing a
more uniform irradiance of the canopy with a smaller fraction of the
canopy likely to be light saturated. As a result, canopy photosynthesis
tends to be significantly more light-use efficient under diffuse sunlight
than under direct sunlight3. Hence, the net effect on photosynthesis of
radiation changes associated with an increase in clouds or scattering
aerosols depends on a balance between the reduction in total PAR
(which tends to reduce photosynthesis) and the increase in the diffuse
fraction of the PAR (which tends to increase photosynthesis).
Although some global climate/carbon-cycle models include the effects
of atmospheric aerosols on total irradiance and surface temperature
(see, for example, ref. 9), none has accounted for the effects of clouds
and aerosols on the land carbon sink through changes in the diffuse
fraction of radiation.

To account for the effects of diffuse radiation on canopy photosyn-
thesis, we modified the JULES land-surface scheme used in the
Hadley Centre climate models10. JULES includes a multilayer

approach to scale photosynthesis from the leaf to the canopy. In this
study, we also separated each canopy layer into sunlit and shaded
regions11. Figure 1 shows a comparison of the simulated light
response of the gross primary productivity (GPP) with measure-
ments inferred from the eddy correlation technique under direct
and diffuse irradiance conditions within a broadleaf temperate
forest12 and a needleleaf temperate forest13. The modified JULES
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Figure 1 | JULES model evaluation against observations. Observed and
modelled light response of the GPP to both direct and diffuse PAR (open
triangles and filled circles, respectively) averaged over bins of 200 mmol
quanta per square metre per second: a, broadleaf forest site; b, needleleaf
forest site. For the purposes of this validation, data points are split into
‘diffuse’ and ‘direct’ conditions, using diffuse fractions of greater than 80%
and less than 25% to discriminate between these two cases. Measurements
inferred from eddy correlation are given in black (error bars, 1 s.d.), and
simulations are given in pink (Methods).
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