Development of a new type of crop model for impact assessment of global warming and air pollution (Ozone)

> 20th AIM WS@NIES 24 Jan. 2015

#### Yuji Masutomi College of Agriculture, Ibaraki Univ.

# Impact of global warming on rice productivity



Masutomi et al. (2009)

Global warming will have significant impacts on rice productivity over Asia.

## Next step is...

- How to adapt?
  - Local problem
    - We must consider local rice varieties.
    - Different rice varieties have different responses to high temperature.



## How to simulate the difference?

- Leaf temperature
  - is one of key factors for the different response



Arakawa et al. (2014)

Same conditions including weather, but different leaf temperature

## How to simulate leaf temperature?

• Basically, temperature of any objects is determined by input and output of energy.



Leaf temperature can be simulated by energy balance of the crop.

Requirement #1

Energy balance is simulated to determine leaf temperature

#### Impact of Ozone



2ppb <<

#### 36ppb

(Provided by Dr. Yonekura (CESS))

Ozone reduces crop productivity

#### Future impacts of Ozone







## Combined effect of CC and Ozone

nature climate change



# Threat to future global food security from climate change and ozone air pollution

Amos P. K. Tai $^{1\star\dagger}$ , Maria Val Martin $^{2,3}$  and Colette L. Heald $^{1,4}$ 



## Crop physiological interaction



Both CO2 and O3 are taken up into leaf through stoma.

- High CO2 concentration tends to close stoma
  - O3 uptake will reduce  $\rightarrow$  reduce ozone damage
- High O3 concentration tends to close stoma
  - CO2 uptake will reduce  $\rightarrow$  reduce photosynthesis

What will happen under High CO2 and O3 concentration?

A stomatal response model should be included.

#### Requirement #2

#### Stomatal response should be included

## So, I am developing MATCRO...

- MATCRO has two components
  - Land surface model
    - Simulates heat and water fluxes (energy balance)
    - Includes a stomatal response model
    - is based on MATSIRO (Takata et al., 2003)
      - MATSIRO is a component of climate models
  - Crop model
    - Phenology and Partitioning models

#### MATSIRO + Crop = MATCRO

## Structure of MATCRO



## Simulation results

#### Model test site -Mase-



- Observation : climate variables, sensible and latent heat fluxes, CO2 and CH4 fluxes, biomass for each organ, LAI, etc..
- Variety: Koshihikari

#### -Total Biomass-



### -Panicle (Yields) biomass-



## -Latent heat flux-(evaporation and transpiration)



#### Heat flux into ground



## Summary

- A new type of crop model has been developed
  MATCRO
  - is a LSM combined with a crop model
- MATCRO can reproduce well
  - Biomass
  - heat fluxes
    - Leaf temperature must be reproduced well

## Challenges

- Ozone response and interaction with CO2
- Global application
  - Global parameterization
    - Phenology model and partitioning model
  - Nitrogen dynamics

## Thank you for your attention!

#### Parameterization -Partitioning-



#### -Sensible heat flux-



### Parameterization

## Parameterization I - Phenology-

The method of Growing degree days(GDDs) is used.
 – GDDs are summation of air temperatures over growing periods



-Leaf biomass-



# The impact of changes in diffuse radiation on crops

- Diffuse-radiation fertilization effect
  - Surface radiation has two components of Direct and Diffuse
  - Crops can use diffuse radiation more efficiently than direct radiation
  - Higher fraction of diffuse radiation increase crop productivity.
- High concentration of aerosols decrease total radiation but increase the fraction of diffuse radiation.



## Diffuse

nature

Vol 458 23 April 2009 doi:10.1038/nature07949

#### LETTERS

## Impact of changes in diffuse radiation on the global land carbon sink

Lina M. Mercado<sup>1</sup>, Nicolas Bellouin<sup>2</sup>, Stephen Sitch<sup>2</sup>, Olivier Boucher<sup>2</sup>, Chris Huntingford<sup>1</sup>, Martin Wild<sup>3</sup> & Peter M. Cox<sup>4</sup>