

Climate Change Impact Assessment Considering Uncertainties and Integrated Modeling : Recent Research Progress in Republic of Korea

2015. 11. 13.

*Seoul National University **Korea Environmental Institute

> *Sunyong Sung *Dong-Kun Lee **Huicheul Jung

Contents

- 1. Introduction
- 2. Dealing with Uncertainties
- 3. Complexity of Climate Change
- 4. Transboundary Problems of

Climate Change

5. Conclusions

Introduction

Backgrounds : Climate Change Impacts in Korea

• In Korea, Frequency and intensity of natural hazard has increased

Scientific based Effective, Efficient Climate Change Adaptation Plans are Needed

Backgrounds : Uncertainties

- The range of climate change impact related with "Uncertainties"
 - Policy makers need economic valuation for decision process

Uncertainties from Climate Change Scenarios (IPCC, 2001)

Uncertainties from Economic Assessment Method (Menne et al.,2006)

Backgrounds : Complexity

- The Impact of climate change has complex interactions
 - Casual relations among phenomena should be considered

Backgrounds : Transboundary

- Environmental problems affect on the large scale
 - Ex) Yellow dust, Air Pollutant from China

Key Questions on Climate Change Studies in Korea

How to reduce uncertainties in impact assessment?

• Development of Economic Assessment Technique for Climate Change

Impact and Adaptation Considering Uncertainties

How to **set the framework** for the integrated impact assessment model on climate change?

• Development of Integrated Model for Climate Change Impact and

Vulnerability Assessment

How to take into account transboundary environmental issues?

• Impact Assessment of SLCP/LLCP in East-Asia Considering Cost of

Mitigation and Adaptation

Dealing with Uncertainties

Project Overview

- to support the national and local adaptation planning considering uncertainty of projection
 - Three types of uncertainties considered in 6 individual sectors

Dealing With Uncertainties: Forestry Sector

- Uncertainties have been considered in species distribution modeling
 - 8 different species distribution models
 - 4 different climate change scenarios

Dealing With Uncertainties: Forestry Sector

 Considerable differences among the species distribution models caused by algorithms, verification methodology

	ANN	CTA	FDA	GAM	GBM	GLM	MAXENT	RF
<u>RCP</u> 26	E.	* *			* E		*	×
<u>RCP</u> 45	÷				*	* *		* *
RCP60	* E							S. E
<u>RCP</u> 85	E	*			**************************************		*	* E

Distribution of Korean pine in 2040

Dealing With Uncertainties: Forestry Sector

- Ensemble modeling reduces uncertainties
 - Results from individual model showed high uncertainty. But ensemble model derive reliable result

Dealing With Uncertainties: Landslide Risk

- 10 spatial distribution models applied for landslide risk area
 - Ensemble methods applied for ensure the validity of models

Result Selection Considering Validity and Uncertainties of Models

Dealing With Uncertainties: Landslide Risk

• Precipitation differences in climate scenarios cause uncertainties on

impact assessment

Dealing With Uncertainties: Flood Risk

- Monte Carlo simulation for scenario ensemble
 - Ensemble of RCP scenarios from a range of future precipitation
 - Probability distribution of extreme rainfall of each scenarios with 20,000 iterations

- MaxEnt model with probability distribution of flood depth
 - Probability distribution of flood depth by 10,000 iterations to indicate possibility of flood occurrence
 - The average and maximum possibility in 95% confidence of the outputs

Dealing With Uncertainties: Flood Risk

• Monte Carlo simulation generates the range of uncertainties

		Minimum	Average	Maximum
	daily precipitation (mm)	101.41	133 <u>.</u> 10	356.76
2050 raintali	accumulated precipitation (mm)	146.24	198.20	415 <u>.</u> 66
	daily precipitation (mm)	90.00	137 <u>.</u> 96	250.00
Current rainfall	accumulated precipitation (mm)	141.5	197.04	360

Frequency of daily precipitation in ensemble

Frequency of three-day accumulated precipitation in ensemble

Dealing With Uncertainties: Flood Risk

- MaxEnt with probability distribution of precipitation
 - Standard deviation of 10,000 outputs indicating uncertainty
 - Matrix of possibility and uncertainty showing most risky areas, with high possibility and low uncertainty

Complexity of Climate Impact Assessment

Integrated Impact Assessment Model Structure

- Integrated models consist with four main strategies
 - Individual sector model
 - : (ex) Water quality
 - Cross-Sectoral model
 - : (ex) Water sector model
 - (Water quality, Water quantity, Aquatic ecosystem)
 - Integrated impact model
 - : (ex) Expending conservation area
 - (Ecosystem, Agriculture, Forestry, Water)
 - Synthetic impact model
 - : Risk assessment

Conceptual diagram for Integrated Impact Assessment Model

Integrated Impact Assessment Model Structure

Integrated Impact Assessment Model : Land Use Optimization

- Land use allocation by each policy goal
 - Feedback roof considering economic valuation

Transboundary Problems of Climate Change

Impact assessment of climate change is under discussion at

international scale

Transboundary Issues in East Asia

- Casual relationship between air quality and forest productivity
 - Damage and its cost will be calculated by process based model in forestry sector

Conclusions

To evaluate the impact of climate change in Korea

- 1. Consideration on uncertainties
 - Ensemble model
 - Multi climate change scenarios
 - Probabilistic approach
- 2. Complexity of climate change impact assessment
 - Land use based optimization: economic evaluation of land use
- 3. Transboundary Problems of Climate Change
 - Transboundary problems: process based model

Thank You for Your Attention

Sunyong Sung (white109@snu.ac.kr) Dong-Kun Lee (dklee7@snu.ac.kr) Huicheul Jung(hchjung@kei.re.kr)