Offsets

The macro consequences of project-based programs

JAE EDMONDS 21ST AIM WORKSHOP TSUKUBA, JAPAN

November 14, 2015

This work was performed with support from Electric Power Research Institute.

Proudly Operated by Battelle Since 1965

Motivation

- Motivation: Offsets were an important element of the Kyoto Protocol (KP) where they were called the Clean Development Mechanism (CDM), and many emissions mitigation proposals (e.g. McCain-Lieberman) include them.
 - They were designed to lower the overall cost of emissions mitigation, while expanding the scope of participation.
 - As we move into the Post-KP world they are worth another look.
- Today's presentation is based on work performed as part of an EPRI program designed to improve our ability to quantify the potential of offsets programs. It was published recently in *Climatic Change*:
 - Calvin, Katherine, Steven Rose, Marshall Wise, Haewon McJeon, Leon Clarke, and Jae Edmonds. "Global climate, energy, and economic implications of international energy offsets programs." *Climatic Change* (2015): 1-14.

Proudly Operated by Battelle Since 1965

BACKGROUND

Supply Incentives for Offset Suppliers

- Past estimates of offset supply potential was based on the assumption that offsets programs, behaved more or less like tax programs.
- They were modeled by applying a carbon price to an economy or sector and then scaling the result based on judgement.

But this approach is inconsistent with how offset markets operate in practice.

- In offset sectors, economic agents are rewarded for undertaking qualifying activities.
- Emissions are not priced, and there is no emissions cost for non-participants. (In contrast to a carbon tax or permit price)
- Qualifying activities are assigned a level of emissions mitigation based on rules
 - Intended to ensure that only activities that truly reduce emissions are credited for sale in the carbon market.
 - This is called the additionally criterion.
 - Additionally is tested at the project scale.

The Bottom-up Offsets Literature

- There is a large literature looking at offsets and their implementation, particularly in the context of the Clean Development Mechanism under the Kyoto Protocol.
- The core question of the bottom-up offsets literature is, "additionality"
- How do we know that the a party, seeking compensation for a desired action, e.g. installing a wind turbine, would not have undertaken the action had there been no offsets program?
- In the work that we have done, additionality is NOT an issue. We use a model that provides us with perfect information about what would have happened in the absence of an offsets program. So, we never issue any offsets that do not satisfy additionally.
- However, we can compare the sum of emissions credits issues (the bottom-up calculation) to global emissions reductions.

Our question

- Our question is more fundamental: How does the perfect implementation of an offsets program change the behavior of the global energy-economy system and its emissions?
 - How close do offsets programs come to delivering economic potential?
 - How well do offset credits reflect emissions mitigation?
- Our principle conclusion is that global system emissions mitigation is not equivalent to either
 - The sum of individual offset credits, or
 - A cap-and-trade system.
- This is because offsets are a subsidy for deploying desired technologies, which is different than a tax, which penalizes undesired technologies.

Numerical experiments use GCAM

- The Global Change Assessment Model (GCAM) couples representations of the economy, energy system, agriculture and land-use system, water, and climate system.
- Significant technology detail within energy supply and demand

A Community Model, download at: <u>http://www.globalchange.umd.edu/models/gcam/download/</u>

Proudly Operated by Battelle Since 1965

APPROACH

Focus and Approach

Focus: Offsets program for electric power in non-Annex I regions plus the former Soviet Union

And non-electric energy as a sensitivity

Approach: Run GCAM to produce the following pathways

- **Baseline**, no offsets program (update of RCP 4.5 Ref)
- Conventional mitigation supply schedule (use carbon taxes to map out a conventional mitigation supply schedule)
 - At each point in time, with a focus on 2020
- Offsets program—at each point in time with a focus on 2020
 - Credits supplied to the market (the bottom-up estimate of mitigation)
 - Net change in global emissions (relative to baseline)

International Energy Offsets 2020

Proudly Operated by Battelle Since 1965

International Offsets Supply

Offset Crediting

- Prescribed abatement credits for each technology relative to its crediting baseline.
- Only above baseline deployment is eligible for credits & payment.
- Crediting baselines considered
 - Operating Margin (OM): better than average energy mix emissions factor
 - And as sensitivity cases:
 - Operating Margin variant with no crediting for advanced fuel technologies
 - Build Margin: Better than the average for recent builds
 - Combined Margin: Weighted combination of Operating & Build Margins

Offset Crediting Protocol for 2020 Using Operating Margin (OM) Method

Proudly Operated by Battelle Since 1965

Operating Margin Method	
Sector Coverage	Electric Utilities
Eligible Activities	New power generation facilities for which CO ₂ /kWh is lower than the average for the power sector in the GCAM reference scenario (without offsets). Only technology deployment above the GCAM reference scenario is eligible.
Offset Supplying Regions	China, India, Other south and east Asia, the former Soviet Union, Mideast, Africa, Latin America
Program Start Date	January 1, 2015
Year for which potential supply is estimated	2020
Offset Calculation	Difference between facility emissions (CO ₂ /kWh) and power sector average in the reference scenario, times the power produced by the facility.

International Energy Offsets 2020

Proudly Operated by Battelle Since 1965

Operating Margin: crediting for above baseline deployment and better than average energy mix emissions.

International Energy Offsets 2020

Proudly Operated by Battelle Since 1965

Factors driving results

- Offsets act as a subsidy to lower-emission investments
- Subsidies and taxes are not interchangeable.
 - Relative price effects of subsidies and taxes are the same, BUT
 - Scale effects are opposite in sign.
- Relative Price Effect
 - The offset subsidy shifts the relative price and power mix in favor of nonemitting technologies.
 - In that way the effect is the same as a carbon tax.
- The Scale Effect
 - The subsidy lowers the cost of electricity, which increases electricity demand.
 - The carbon tax has exactly the opposite effect.
 - The tax raises the cost of electricity, which decreases electricity demand.

Electricity Prices in 2020 with a \$20/tonCO₂ Price

Proudly Operated by Battelle Since 1965

Comparison of Power Generation Characteristics in 2020 with a \$20/tonCO₂ Price in Three Cases: Reference Scenario, Economic Potential, and the OM Method of Offsets Creation

International Electricity Generation in 2020 with a \$20/tonCO₂ Price

Proudly Operated by Battelle Since 1965

Total Electricity Generation in Offset-Supply Regions in 2020 with a \$20/tonCO₂ Price in Three Cases: Reference Scenario, Economic Potential, and the OM Method of Offsets Creation

International Generation 2020 Differences from Baseline (with \$20/tCO₂)

Change in Electricity Generation by Fuel Type in OffsetSupply Regions in 2020

Four Offset Program Design Sensitivities

Proudly Operated by Battelle Since 1965

- Crediting baseline
- Technology eligibility
- Sectoral inclusiveness
- Delivery risk reduces
- No program design delivers the economic potential and

 Credits never equal net mitigation.

Proudly Operated by Battelle Since 1965

OFFSETS IN A HYPOTHETICAL INTERNATIONAL MITIGATION PROGRAM

GHG Market Implications of International Energy Optional Participation?

Group 1 (Annex1 less FSU) emissions constraint scenario
 Energy CO₂ emissions limited to 80% below 2005 levels in 2050
 No banking

International demand for offsets

Kyoto group (less FSU) energy CO₂ emissions limited to ~80% below 2005 in 2050.

"Rest of world" optional participation offset suppliers with international energy CO₂ only. No annual limit on offset use.

Operating margin offset crediting for above baseline deployment.

US, Other Group 1 and Global cumulative mitigation, Offsets, and Leakage: 2020-2050

Significant use of offset

credits

ORY

Since 1965

 Lower Carbon Price
 t

 ORY
 Proudly Operated by Battelle Since 1965

US, Other Group 1 and Global cumulative mitigation, Offsets, and Leakage: 2020-2050

GHG Market Implications Very Little Mitigation ORY **Potential Captured** Since 1965 (Int'l energy offsets & mitigation) US, Other Group 1 and Global cumulative mitigation, Offsets, and Leakage : 2020-2050 **GHG mkt scenario** 250 Leakage •US + Other Group 1 energy CO₂ 80% 200 below 2005 in 2050 Other Group 1 Offset Purchases International energy 150 offsets permissible USA Offset Purchases GtCO₂ •KP ratifying 100 countries (less Other Group 1 Russia) similar CO₂ 50 targets USA 0 Net Global No Offsets Subsidy Economic Mitigation Offsets Potential -50

US, Other Group 1 and Global cumulative mitigation, Offsets, and Leakage: 2020-2050

Key Messages

- Offset supply incentives should be modeled in estimating offset supplies
 - Responses to offset supply participation incentives can be very different from responses to the pricing of emissions
 - Actual GHG emissions abatement achieved in response to offset supply incentives could be less than the offset credits issued, or even negative
- Possible policy design ramifications
 - Integrity implications for emissions caps/targets and linked trading systems.
 - Crediting scheme is important, but practical effective design needs to be done with great care.
- Investment risks and transaction costs also important issues for supply – e.g., investment risks reduce near-term aggregate supply over 50% (80% for some sectors)
- This study is relevant to offsets writ large and other market contexts

Proudly Operated by Battelle Since 1965

DISCUSSION

Proudly Operated by Battelle Since 1965

BACKUP SLIDES

SENSITIVITY SLIDES

Sensitivity to CREDITING BASELINE

Alternative Crediting Baseline Assumptions

Crediting Baseline Method	Implementation
	•
Operating Margin	Difference between facility emissions (CO_2/kWh) and power sector average in the reference scenario, times the power produced by the facility.
Build Margin	Difference between facility emissions (CO_2/kWh) and power sector average investment in new plant and equipment, times the power produced by the facility.
Combined Margin	Weighted combination of Operating & Build Margins
2005 Operating Margin	Difference between facility emissions (CO2/kWh) and power sector average in 2005, times the power produced by the facility.

OM Net Global Emissions Reductions (Abatement) and Value of Offsets, \$20/tCO₂ Price Provide United by Battelle Since 1965

OM Net Global Emissions Reductions (Abatement) and Value of Offsets, \$20/tCO₂ Price Provide United by Battelle Since 1965

Sensitivity to **TECHNOLOGY ELIGIBILITY**

Alternative Technology Eligibility Assumptions, \$20/tCO₂ Price

- We consider the sensitivity of our results to two alternative technology eligibility assumptions compared to All technologies better than the OM are eligible—our initial assumption:
- 1. Nuclear Power Exclusion
- 2. Advanced Fossil Fuel Technologies Exclusion (renewables and nuclear only)

Sensitivity to SECTORAL COVERAGE

Sensitivity to **DELIVERY RISK**

- Incorporating deliver risk into the analysis results in a reduction in the amount of offsets credits generated by a particular project
 - Reflects the possibility that such a project will not deliver its promised abatement.
- We have taken quantitative estimates from Rose, et al. (2013) and applied them to our estimates of offset supply.
- These estimates, which differ by region and technology, are multiplied by the credit calculated previously.
- The result is a smaller volume of expected offsets at any price, or equivalently, any bundle of offsets sells at a corresponding discount.
- Results in higher electricity subsidy for renewables at a given carbon price, driving emissions up still further than in the "no risk" case.

Overview of the Global Change Assessment Model

The Global Change Assessment Model

Proudly Operated by Battelle Since 1965

We can think of GCAM as having five major components, which are closely coupled

- 1. The socioeconomic system
- 2. The energy system
- 3. Agriculture, land use & bioenergy
- 4. Water
- 5. Atmosphere, oceans, & climate systems

These systems are strongly interactive in GCAM.

Emissions tracking and time step

- GCAM tracks 24 greenhouse gases and short-lived species including
 - CO₂, CH₄, N₂O
 - Halocarbons
 - Carbonaceous aerosols
 - Reactive gases (e.g. CO, NOx, VOCs) &
 - Sulfur dioxide

- Default time step is 5 years
- Default time horizon is 2100

The Core Global Change Assessment Model: A Community Resource

- GCAM is a global integrated assessment model
- GCAM links Economic, Energy, Land-use, and Climate systems
- Typically used to examine the effect of technology, policy and climate change on the economy, energy system, agriculture and landuse

Technology-rich model

Emissions of 16 greenhouse gases and shortlived species: CO_2 , CH_4 , N_2O , halocarbons, carbonaceous aerosols, reactive gases, sulfur dioxide.

Runs through 2095 in 5-year time-steps.

A Community Model, download at: <u>http://www.globalchange.umd.edu/models/gca</u> <u>m/download/</u>

Documentation at: http://wiki.umd.edu/gcam/

GCAM is member of the class of Higher Resolution IAMs

Model	Home Institution	
AIM Asia Integrated Model	National Institutes for Environmental Studies, Tsukuba Japan	
Global Change Assessment Model	Joint Global Change Research Institute, PNNL, College Park, MD	
IGSM Integrated Global System Model	Joint Program, MIT, Cambridge, MA	
IMAGE The Integrated Model to Assess the Global Environment	PBL Netherlands Environmental Assessment Agency, Bildhoven, The Netherlands	
MESSAGE Model for Energy Supply Strategy Alternatives and their General Environmental Impact	International Institute for Applied Systems Analysis; Laxenburg, Austria	
REMIND Regionalized Model of Investments and Technological Development	Potsdam Institute for Climate Impacts Research; Potsdam, Germany	

The Core Global Change Assessment Model: A Community Resource

- GCAM is a global integrated assessment model
- GCAM links Economic, Energy, Water, Land-use, and Climate systems
- Technology-rich model
- Emissions of 16 greenhouse gases and short-lived species: CO₂, CH₄, N₂O, halocarbons, carbonaceous aerosols, reactive gases, sulfur dioxide.
- Runs through 2095 in 5-year time-steps.
- A Community Model, download at: <u>http://www.globalchange.umd.edu/mod</u> <u>els/gcam/download/</u>
 - Documentation at: <u>http://wiki.umd.edu/gcam/</u>

