

Prepared for the 21th AIM International Workshop, NIES, Tsukuba, JAPAN, 2015

Abatement Performance Evaluation

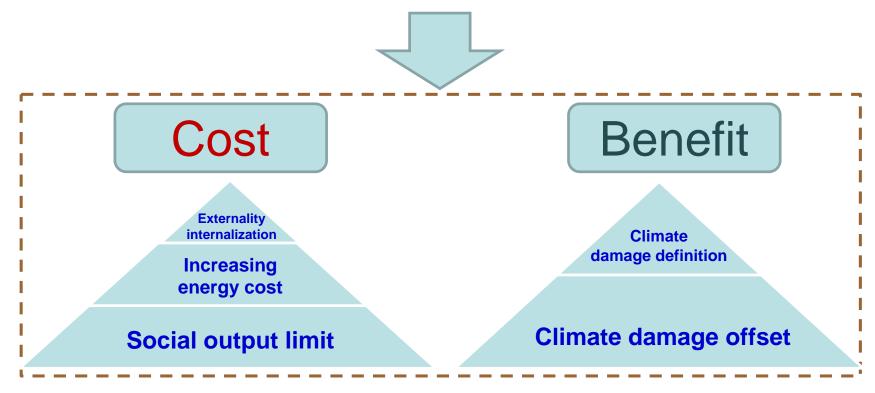
of Climate Policies in China-

A Study based on Integrated Assessment Model

Lei Zhu, Pan Peng, Ying Fan

Center for Energy and Environmental Policy Research Institute of Policy and Management Chinese Academy of Sciences

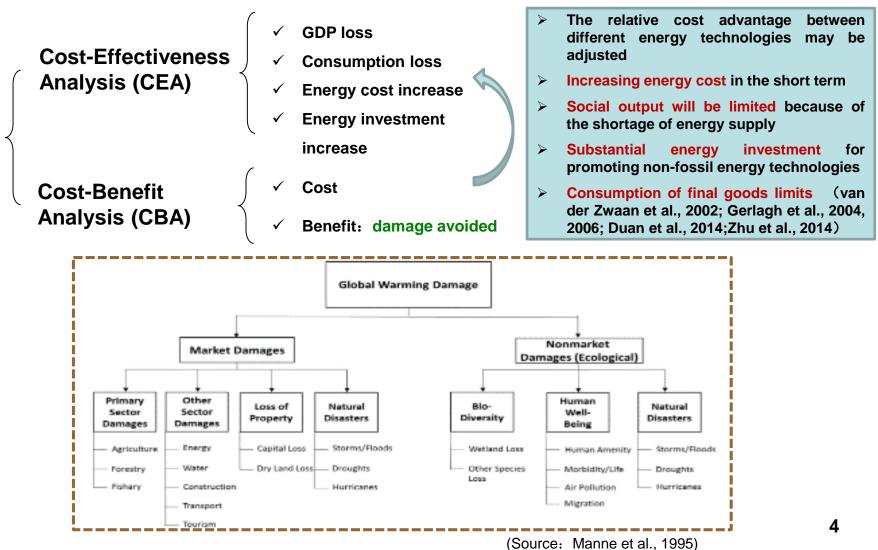
Content



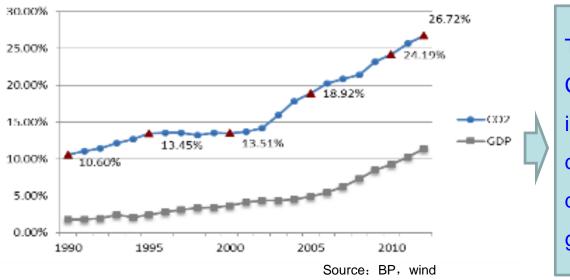
- Introduction
- Model
- Empirical study
- Result and analysis
- Intro to CEEP

Introduction

Center for Energy & Environmental Policy Research CEEP


- Countries need to adopt measures/policies to control domestic greenhouse gas (GHG) emission in response to global climate change
- The implementation of climate policies has two sides

Introduction


• In general, climate policies evaluation has two aspects:

5

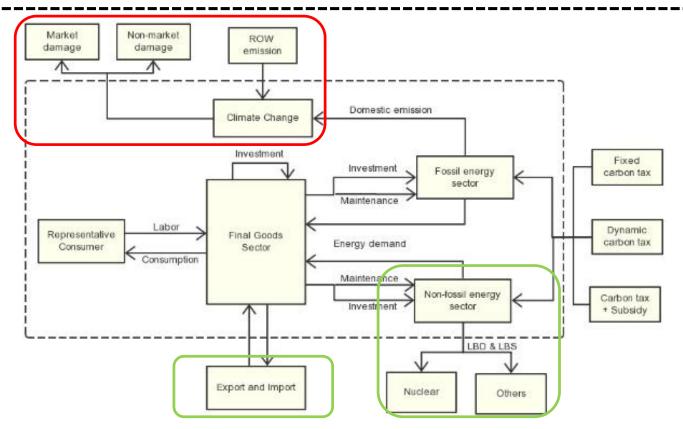
Introduction

- The global response to climate change has been influenced to a great extent by particular regions with large CO₂ emissions (e.g. the USA, the EU and China)
- China, the world's largest developing country, is the nation with the greatest CO₂ emission; approximately 92 million tons in 2012, which is around 26.72% of total global emission (BP, 2013).

Therefore, the implementation of China's climate policies can not only impact on domestic sustainable development, but can also have a direct effect on the performance of global actions on climate change

Introduction

- Several difficulties exist in policy evaluation based on integrated general equilibrium models in single region:
 - Difficult to clearly consider and describe the characteristics of specific regional economic development, as well as energy use
 - In addition to the global temperature target, countries can adopt different types of domestic emission reduction measures, or policy mix
 - Due to the global greenhouse effect, climate damage in a specific region is directly influenced by the global CO2 emission, not by the region itself (Nordhaus and Boyer, 2000)


Our Work

 To better analyze and evaluate abatement performance of a specific region in the medium- and long-term, we establish a modified single-region version of DEMETER model (DEMETER-R), to evaluate China's climate policies

Model

Center for Energy & Environmental Policy Research

- Model: DEMETER-R
- Subject: social welfare maximization
- Agent: consumer fossil energy sector and non-fossil energy sector
- Technological change: AEEI 、 LBD 、 LBS curve
- Climate module: multi-stratum carbon recycle system (Nordhaus and Boyer, 2000)
- Term: 2010-2150
- **Policies:** fixed carbon tax, dynamic carbon tax, and mixed policy

Model

- Definition of Regional Climate Loss
 - Regional and Global Emission Ratio
 Setting
 - Multi-stratum carbon recycle system (Nordhaus and Boyer, 2000)
 - Market and Non-Market Climate Loss (Manne et al., 1995)

<u>'Burden'</u>

The abatement ratio of China compared to the world will increase when its CO2 emission share decreases compared to the world

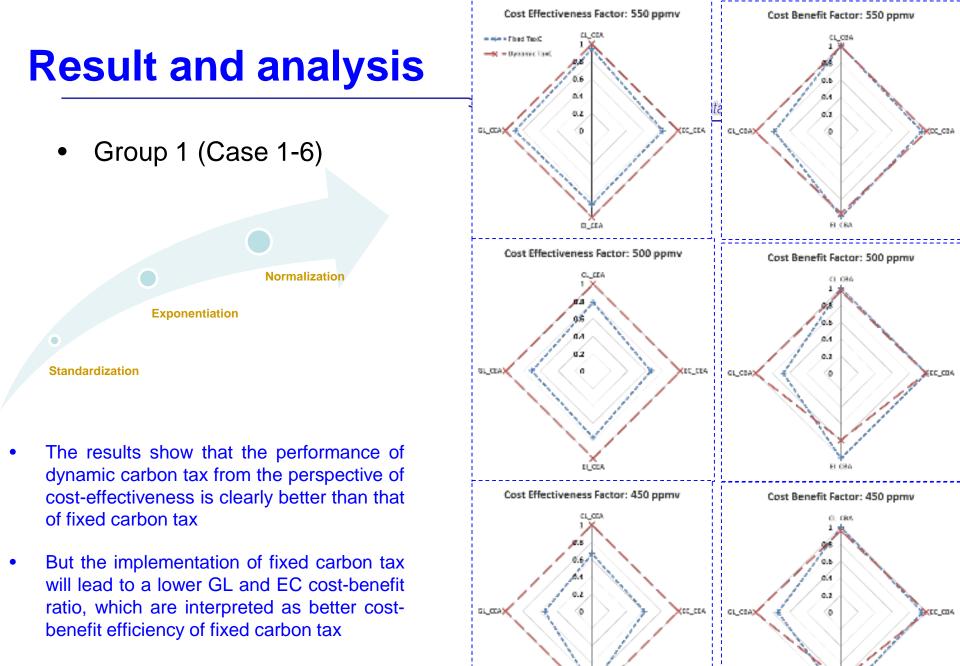
Center for Energy & Environmental Policy Research CEE

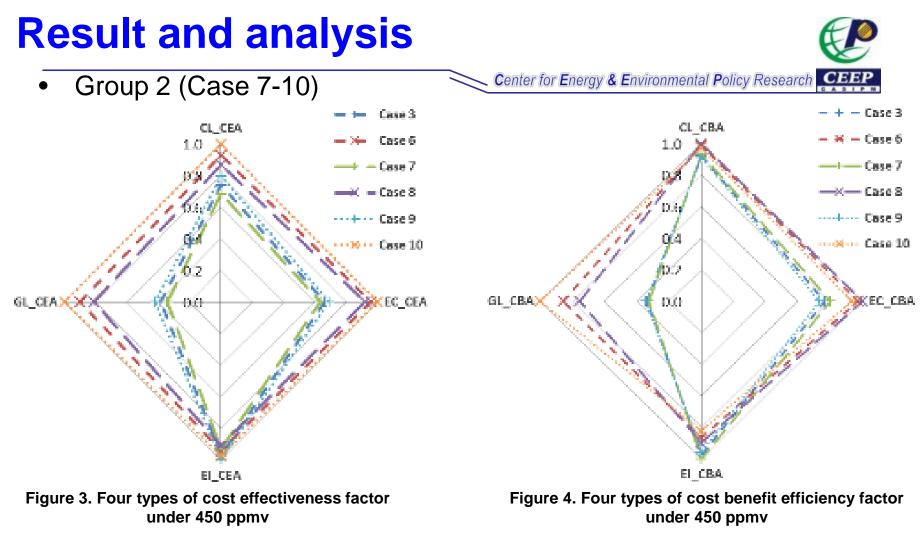
Free-riding'

Conversely, the abatement ratio of China will decrease compared to the world when its CO2 emission share increases compared to the world

Definition	Equation
Emission ratio	$\tilde{E}m_t^{ROW} = \Theta_t \tilde{E}m_t^{domestic}$
Market damage factor	$D_t = d_1 \cdot TEMP_t^{d_2}$
Non-market damage factor	$WTP_t = d_3 \cdot TEMP_t^{d_4} / (1 + 100 \cdot \exp(-0.23 \cdot GDP_t / L_t))$
Regional climate damage	$Damage_t = (MD_t + WTP_t) \cdot GDP_t$
Output distribution	$Y_t^C = GDP_t + Damage_t + \sum_k M_t^k$

	Performance	Indicators	Equation	
Madal	Cost-Effectiveness	Consumption Loss (GL)	$CL_{i} = \sum_{t}^{T} [(1 + \rho)^{-t} (C_{BAU,t} - C_{i,t})]$	
Model		GDP Loss	$GL_{i} = \sum_{i}^{T} \left[(1 + \rho)^{-i} (GDP_{BAU,i} - GDP_{i,i}) \right]$	
	Performance	Energy Cost Increase	$ECI_{i} = \sum_{i}^{T} \sum_{j} [(1 + \rho)^{-i} (p_{i,j}^{j} X_{i,j}^{j} - p_{BAU,j}^{j} X_{BAU,j}^{j})]$	
 Abatement Performance Measure 		Energy Investment Increase	$EII_{i} = \sum_{i}^{T} \sum_{j} [(1+\rho)^{-i} (I_{i,j}^{j} + ARD_{i,j}^{j} - I_{BAU,j}^{j} - ARD_{BAU,j}^{j})]$	
✓ Cost-Effectiveness Performance		Consumption loss Cost	$\sum_{i=1}^{T} [(1+\rho)^{-i} (C_{BAU,i} - C_{i,i})]$	
Consumption Loss (CL)		Benefit Ratio	$CCBR_{i} = \frac{\sum_{i} [(1 + \rho)^{-i} (C_{BAU,i} - C_{i,i})]}{\sum_{i} [(1 + \rho)^{-i} Benefit_{i,i}]}$	
GDP Loss (GL)			$\sum_{i=1}^{T} [(1+\rho)^{-i} (GDP_{num} - GDP_{in})]$	
Energy Cost Increase (EC)	GDP loss Cost Benefit Ratio		$GCBR_{i} = \frac{\sum_{i}^{r} [(1+\rho)^{-i} (GDP_{BAU,i} - GDP_{i,i})]}{\sum_{i}^{r} [(1+\rho)^{-i} Benefit_{i,i}]}$	
Energy Investment Increase (EI)	Cost-Benefit Performance			
✓ Cost-Benefit Performance		Energy cost increase Cost Benefit Ratio	$ECBR_{i} = \frac{\sum_{i} \sum_{j} [(1 + \rho)^{-i} (p_{i,j}^{j} Y_{i,j}^{j} - p_{i,j}^{j} Y_{i,j}^{j})]}{\sum_{i}^{T} [(1 + \rho)^{-i} Benefit_{i,i}]}$	
 Consumption loss Cost Benefit Ratio (CBR) 		Energy Investment increase Cost Benefit Ratio	T	
GDP Loss CBR			$ICBR_{i} = \frac{\sum_{i} \sum_{j} [(1+\rho)^{-t} (I_{i,j}^{j} + ARD_{i,j}^{j} - I_{i,j}^{j} - ARD_{i,j}^{j})]}{\sum_{i}^{T} [(1+\rho)^{-t} Benefit_{i,i}]}$	
Energy Cost Increase CBR				
Energy Investment Increase CBR		Consumption-decreasing Abatement contribution Share	$CAS_{i,t} = (Y_{BAU,t}^{F} - Y_{BAU,t}^{F} \sum_{j}^{j} \frac{Y_{i,t}^{j}}{\sum_{j}^{j} Y_{i,t}^{j}}) / (Y_{BAU,t}^{F} - Y_{i,t}^{F})$	
	Technology Abatement	Technology-switching Abatement contribution Share	$TAS_{i,i}^{j} = [(Y_{i,i}^{j} - Y_{i,i}^{j}) + (Y_{i,i}^{j} - Y_{i,i}^{j} \frac{\sum_{j} Y_{i,j}^{j}}{\sum_{j} Y_{i,j}^{j}})] / (Y_{BAU,i}^{F} - Y_{i,i}^{F})$	
	Contribution Performance	Annual Technology-switching Change Ratio	$ATCR_{i,j}^{j} = \sqrt{\frac{TAS_{i,j}^{j}}{TAS_{i,j-1}^{j}}}$	
		Technology Relative Price	$TRP_{i,t}^{j} = \frac{p_{i,t}^{j}}{p_{i,t}^{F}}$	


Empirical Study


Scenario Setting

		Atmosphere	Carbon Tax	Emission Share	S ubsidy
BAU		No	No	BAU	No
 Group 1 	Case 1	550 ppmv	Fixed	BAU	No
	Case 2	500 ppmv	Fixed	BAU	No
	Case 3	450 ppmv	Fixed	BAU	No
	Case 4	550 ppmv	Dynamic	BAU	No
	Case 5	500 ppmv	Dynamic	BAU	No
	Case 6	450 ppmv	Dynamic	BAU	No
	Case 7	450 ppmv	Fixed	Up	No
Group 2	Case 8	450 ppmv	Dynamic	Down	No
	Case 9	450 ppmv	Fixed	Up	No
	Case 10	450 ppmv	Dynamic	Down	No

In the BAU scenario, the emission share between the world and China was calculated by the estimate of CO₂ emission of global DEMETER and DEMETER-R under the BAU scenario

EL CEA

- For these two policies, the four cost effectiveness factors declined with 'burden' and increased with 'freeriding'
- However, the EC and EI cost-benefit efficiency factors increased with 'burden' and decreased with 'free-riding'

Home

Center for Energy & Environmental Policy Research

Institute of Policy & Management, CAS Reaearch Institue of Economics & Technology, CNPC

Contact us

Director: Fan Ying Jiang Xuefeng Executive Director: Li Jianping Dai Jiaquan **President of Council:** Pan Jiaofeng Yuan Shiyi President of Scientific Committee: Xu Weixuan Fang Chaoliang

The Center for Energy and Environmental Policy Research (CEEP) is a joint research center of Institute of Policy and Management, CAS and Research Institute of Economics and Technology, CNPC. Addressing on the solutions to national energy and environmental issues, CEEP conducts scientific research on the area of energy and environment, promotes the development and application of energy economics, policy and management science. CEEP aims to provide energy scenario forecasting, energy system analysis and policy implications for government and enterprises. And CEEP also serves the decision-support of both domestic and abroad development strategy for China's oil companies.

	油价预则
	2013/09/02至2013/11/29
No. 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	MMM 19999999999999999999999999999999999

IAEE	INTERNATIONAL ASSOCIATION Jur ENERGY ECONOMICS		
WWW.LALLORG		Welcome to	IAE

4th IAEE Asia Conference Beijing, China 19-21 Sep. 2014

Integrating carbon pricing and technology investment for low carbon development

News

Speaker:	Prof. Michael Grubb,
	from Institute for Sustainable
	Resources, UCL
Time:	16:00, Nov.13, 2015
Room:	Room A622, New Main Building, Beihang
	University

Center for Energy & Environmental Policy Research(CEEP)

学术报告

Integrating carbon pricing and technology investment for low carbon development

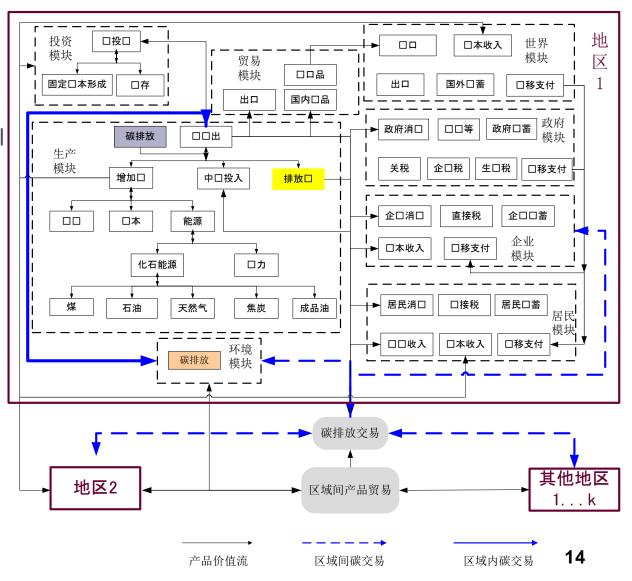
报告人: Prof. Michael Grubb Professor of International Energy and Climate Change Policy at UCL Institute for Sustainable Resources (University College London) Editor-in-chief of the journal Climate Policy enior Advisor on Sustainable Energy Policy to the UK Energy Regulator Ofgem

Latest News

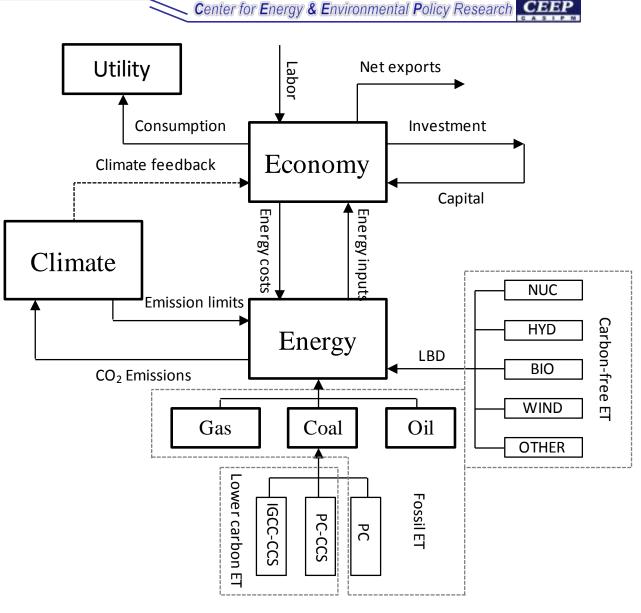
Lecture: Integrating carbon pricing and technology investment for low carbon deve 2015-11-10

lecture:ASEAN, China and India 2030: Prospects and Challenges 2015-10-28

Lecture: Trends in the Sustainability Innovation Discussion in Germany 2015-10-09


http://www.ceep.cas.cn/en/

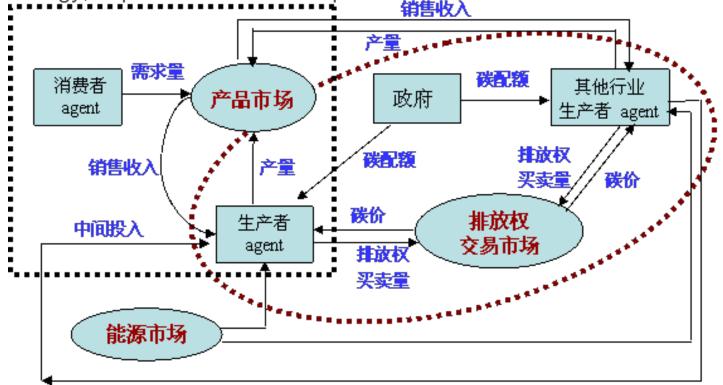
Center for Energy & Environmental Policy Research CEEP


1. MRCGE Model

- China multi-regional resource-environment dynamic computational general equilibrium model (MRCGE)
- 30 Provinces, 42
 Sectors
- Energy Market,
 Commodity Market,
 Emission Trading
 Market

2. CE3METL Model

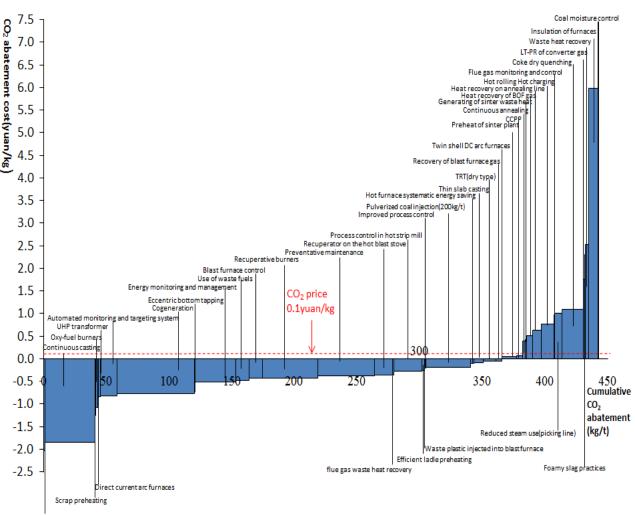
- Long-term dynamic optimal economic development model,
- including economic, energy, and environment/climate modules
- A policy logistic submodule has been introduced to energy module to describe the learning and diffusion among nonfossil and fossil energy technologies



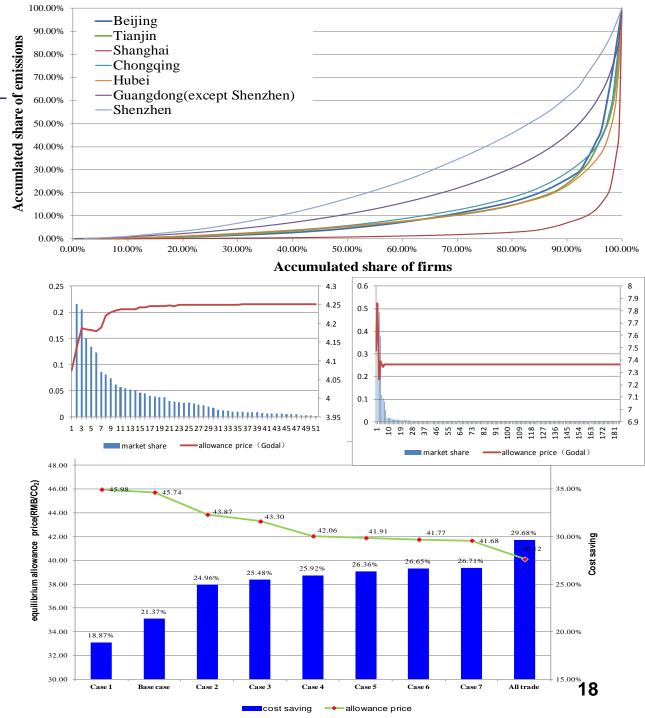
3. ETS-Agent Model

- A system for emission trading simulation.
- Agents are set as the firms covered by ETS. The diversities among firms are reflected at the output, initial emission intensity, and emission abatement technology set.

Center for Energy & Environmental Policy Research CEB


 Rules of agents: emission abatement strategy, allowance trading strategy, expectation of carbon price.

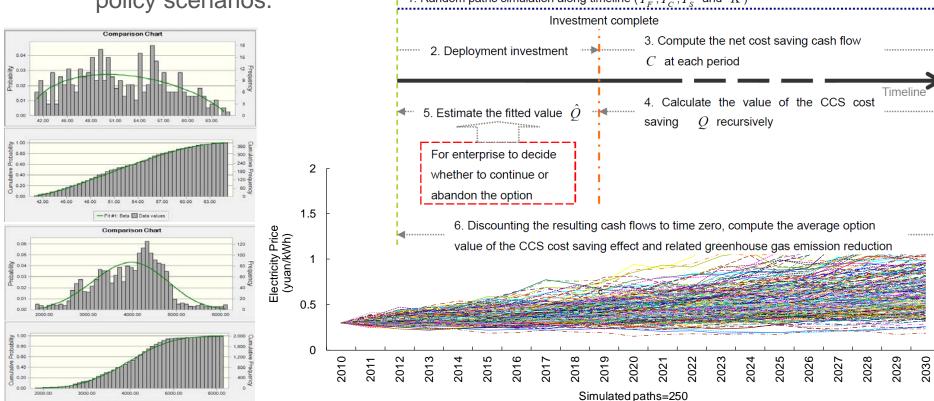
Center for Energy & Environmental Policy Research


4. Bottom-upbased MACCs

- Analyze the production process in energy-intensive sectors, complete a list of all technology options for emission reduction.
- Normalize each technology under 'Cost of Supply Curves (CSC)' and rank them according to their cost for per unit energy saving/emission abatement.

5. PartialEquilibriumAnalysis

- Based on the analysis framework of environmental economics
- Modeling the emission control behaviors of specific firms/sectors covered by ETS
- Transparency and flexibility



-Fit #1: Weibull Data values

6. Evaluation Model for Low-Carbon Technologies

- Based on the Real options approach, taking consideration of several uncertainty factors and the investment flexibility.
- Model is numerically solved by the Least-Squares Monte-Carlo approach, to investigate the possibility of the technology investment under different policy scenarios.
 I. Random paths simulation along timeline (P_F, P_C, P_S and K)

Thanks a lot!

Lei ZHU

lions85509050@gmail.com