Study on CH₄ Emission and Reduction Potential in Waste Treatment of China

Ma Zhanyun Gao Qingxian Huang wei Qu Sijia Chinese Research Academy of Environmental Science (CRAES)

2016-12 Tsukuba, Japan

outline

Background

Methods and Data

- ☑ Calculation of CH₄ emissions
- Scenario analysis method
- ☑ Data
- Results

Mitigation measures

Background

Grants Funded

- GEF
- UNDP

National Communication

- INC
- SNC
- TNC

Talla Statistics

Subcontract 6 waste sector

- MSW landfill
- Wastewater
- Waste incineration
- Waste biochemical treatment

☑ Framework and steps

☑ Calculation of CH₄ emissions

The methodology used to estimate CH₄ emissions was obtained from

The IPCC Revised Guidelines for National Greenhouse Gases Inventory (IPCC, 1996 Guidelines)

- □ The IPCC Good Practice Guidance and Uncertainty Management in National greenhouse(IPCC, GPG 2000).
- **The 2006IPCC Guidelines for National Greenhouse Gases Inventory is cited as a reference during the calculation (IPCC, 2006 Guidelines).**

Landfill:
$$CH_4 Emission = \left[\sum_{x} CH_4 generated_{x,T} - R_T\right] \cdot (1 - OX_T)$$

Domestic: $E_D = \sum_{i} (T_{Di} \bullet E_{r}F_{i}) - R_{i},$
Industry: $E_I = \sum_{i} [(T_{Ii} - S_{i})EF_{i} - R_{i}],$

- ☑ Scenario analysis method
- Economic development and improvement of people's living conditions promotes an increase in MSW and wastewater activity data
- The relevant characteristic data and GDP data on MSW and wastewater treatment from 2000 to 2010 is used to analyze the relationship.

- Baseline Scenario analysis method
- Based on the literature GDP growth rate is predicted to be between 7% and 12%. (He, 2012;Guo and He, 2014; Pan, 2014; Liang et al., 2013)
- Based on State policies, China's economy is predicted to grow between 7% and 9%
- In this research, the GDP prediction is based on China's GDP from 2000 to 2012.
- The growth rate of GDP is set as 7% prior to 2015 and 6% after.

☑ Reduction Scenario analysis method

by 2020, CH_4 emission reduction from MSW landfill disposal will be

- □ A:CH₄ recycling 5%
- **B:CH₄ recycling 5% and DOC_f=0.5**

Emission	Assumptions	Fridenaar		
reduction scenario		Evidences		
Scenario A	5% of domestic municipal solid waste landfill using	Municipal solid waste landfill pollution control standard is GB16889-2008; Annual total emission reduction of		
	landfill gas torch combustion or other recycling methods.	CDM project of landfill gas recovery and utilization in municipal solid waste landfill.		
Scenario B	The ratio of emission factors to degradable organic carbon (DOC _f) was 0.5.	Present value is 0.6, With the improvement of the garbage classification level in our country, comprehensive		
		utilization of landfill and incineration, the policy effect of garbage source classification is further enhanced and		
		more choices for composting and incineration, the DOC _f ratio will be reduced in the future.		
	5% of domestic municipal solid waste landfill using	Municipal solid waste landfill pollution control standard is GB16889-2008; Annual total emission reduction of		
	landfill gas torch combustion or other recycling methods.	CDM project of landfill gas recovery and utilization in municipal solid waste landfill.		

☑ Reduction Scenario analysis method

by 2020, CH₄ emission reduction will be

- **domestic wastewater treatment: 7%**
- industrial wastewater treatment : 10%

CH4 emissions from domestic wastewater treatment under reduction scenario and reduction potential.			
Emission reduction technology	Emission reduction control policy	CH ₄ emission reduction	
Control the aerobic reaction percentage	Design and construction standard of urban wastewater treatment plant engineering project	7%	
Anaerobic system with CH ₄ recycling and combustion treatment function	Best feasible technology guide for prevention and governance of sludge treatment and disposal of city and town wastewater treatment plants		
CH ₄ recycling and utilization in sludge anaerobic assimilation	Notification of ministry of finance and state taxation administration on comprehensive resource utilization and value-added tax policies of other products		

🗹 Data

□ The main emission parameters for calculating according to the research results from China's Second National Greenhouse Gas Inventory (DCC, 2014).

□ The activity data used comes from China Construction Statistics Yearbook (NBSC,2005-2010) and China Environment Statistics Yearbook(MEP, 2005-2012a,b).

In China, CH₄ emissions from MSW landfill, domestic and industrial wastewater treatment respectively were 3.05Mt, 0.61 Mt and 1.62 Mt in 2010. CH₄ emissions increased annually from 2005 to 2010.

CH₄ emissions from 8 industries such as papermaking and paper products industry accounted for 92%

of the total industries.

Fig. 4. CH₄ emissions from industrial wastewater in key industries from 2005 to 2010.

- In 2020, the emission baseline scenario, CH₄ emissions from :
- **MSW landfill disposal: 5.59Mt,**
- **Domestic wastewater treatment : 1.09 Mt,**
- **Industrial wastewater treatment: 2.60 Mt,**
- Respectively, resulting in an increase of 83%,78% and 60%

In 2020, after the emission reduction, CH₄ emissions from:

- **MSW** landfill disposal: 5.3Mt(scenario A), 4.4Mt (scenario B);
- **Domestic wastewater treatment :1.01 Mt ;**
- Industrial wastewater treatment : 2.3Mt;

Respectively, resulting in an increase of 74%, 45%, 66% and 44% compared to 2010.

Under the reduction scenario by 2020, the CH₄ emission reduction potential :

- **MSW landfill disposal : 0.28Mt (scenario A), 1.16Mt(scenario B);**
- **Domestic wastewater treatment** : 0.08Mt;
- **Industrial wastewater treatment : 0.26Mt.**

✓ Waste sector

To Promulgate a series of regulations, rules and standards

- Measures on Household Waste Management in Cities
- Promoting Industrialization of Municipal Sewage and Waste Treatment
- To formulate tax reduction or exemptions policies of waste treatment
- for power generation and utilization
- **CDM** project development: waste incineration power generation and
- recovery of landfill gas for power generation

- ✓ Waste sector
 - Municipal waste treatment and disposal of technical policies and standards
 - Technical Standards for Civil Waste Landfill
 - The Standard on Burning of Civil Waste and Pollution Control
 - Discharge standard of pollutants for wastewater treatment plant
 - Set up a payment system for waste discharge
 - Accelerate reform of waste management system
 - Introduce a competition mechanism
 - Use biding, select qualified enterprises for MSW treatment

☑ Monitoring experiment at landfill

The last five years, in order to better understand the uncontrolled GHG emissions, a quantitative in-situ measurement and evaluation of methane (CH_4) , carbon dioxide (CO_2) and nitrous oxide (N_2O) emissions were conducted at Asuwei landfill in Beijing, China.

☑ Establish a perfect CH₄ recovery system

Recycling is the main way to reduce CH₄ emissions

According the geospatial analysis with **Inverse Distance Weighting (IDW) methods,** in summer, the area whose fluxes ranged from 200 to 800 mg CH_4 m⁻² h⁻¹ accounted for the largest proportion of the monitoring area (40%) while 3300-14200 mg CH₄ m⁻² h⁻¹ of fluxes accounted of the monitoring area (44%) in winter.

CRAE

☑ Increase the layer covering thickness of overlying soil

According to the results determined

by the ratio of CH_4/CO_2 in the soil cover, OX generally increases with depth. Especially, there is a sharp increase in the depth of 60 cm under the landfill soil cover.

☑ Coverage high density polyethylene film in the non-operation surface in landfill

Cooperate with the surface gathering pipeline makes the formation of negative pressure inside the membrane, is conducive to reducing CH₄ emissions.

CRAE

Thanks for your attention !

Our paper "CH₄ emissions and reduction potential in wastewater treatment in China" was published on Advances in Climate Change Research 6 (2015) 216e224

Contact Email: <u>mazy@craes.org.cn</u>; <u>mazyer@126.com</u> Phone: 86-10-84915154

