Intercomparison of regulated river discharge among multiple global hydrological models under multiple forcings

Yoshimitsu MASAKI

Now: Hirosaki University (contracted employee)

Note: Today's talk was done during my working days at NIES

1. Introduction

Introduction

- Dams (>60000 in the world)
 - Most large rivers are regulated = We cannot neglect dam effects
 - No intercomparison on flow regulation has been performed
- Aims of this paper

We examined the characteristics of river discharge regulated by dams using multiple global hydrological models (GHMs) under multiple meteorological forcings

Two-parted papers were written with co-authors:

• Paper I (multiple forcings)

Masaki, Y., N. Hanasaki, K. Takahashi and Y. Hijioka

• Paper II (multiple models) [this talk]

Masaki, Y., N. Hanasaki, H. Biemans (LPJmL), H. Müller Schmied (WaterGAP),

Q. Tang (DBH), Y. Wada (PCR-GLOBWB), S. N. Gosling (GHM-Coordinator),

K. Takahashi and Y. Hijioka

ISI-MIP

- This study was done in the framework of ISI-MIP 2a
 - ISI-MIP: Inter-Sectoral Impact Model Intercomparison Project
 - Headed by PIK (Potsdam Institute for Climate Impact Research, Germany)
 - ISI-MIP2a: Validation for impact analysis
 - See details: https://www.isimip.org/

Phase	Main tasks & target outcomes (IPCC reports)
Fast track (finished)	Future climate change impacts using CMIP5 (using 5GCMs × 4RCPs) IPCC AR5
2a (finished)	Historical validation (including extreme events) [Today's talk]
2b (now-2017?)	Future climate change impacts, esp. in terms of "1.5 degree target" +land-use change + projection till 2300 IPCC Special Report on 1.5degree target
3	? (Future climate change impacts at high spatial resolutions using CORDEX)

Intercomparison of impact models

- Using common meteorological inputs and settings
 - ISI-MIP Coordinator provides these data sets
- Details are defined in the protocol

2. Methods and Analysis

Method

- ISI-MIP2.1A (Water Sector)
 - Multimodel intercomparison: 5 global hydrological models
 DBH, H08, LPJmL, PCR-GLOBWB, WaterGAP
 - Multiforcing intercomparison: 4 meteorological forcings GSWP3, Princeton, WFDEI, WATCH
 * Today, we'll mainly talk GSWP3 results
 - Varsoc runs: Time-varying human interventions

(dams, water withdrawal, change in land use)

- Nosoc runs: No human interventions
- Historical simulations (1971-2000/2010)

Method

- Two case-study river basins in US
 - Missouri-Mississippi and Green-Colorado Rivers
 - With large dams on the main channel
- How to examine dam effects?
 - We examined change in river discharge at dam sites
 - Land cells were numbered along the main channel (SCN: sequential cell number)

River Channels and SCNs

River Channels and SCNs

3. Results

Seasonal Fraction

- Larger discrepancies in seasonality in the upper reach
 - Snow melt flow is observed in spring to early summer
 - Discrepancies are attributable to flow regulation, as well as natural flow in each GHMs

Fall

Summer

Spring

Winter

Seasonal Fraction

- Larger discrepancies in seasonality in the upper reach
 - Snow melt flow is observed in spring to early summer
 - Discrepancies are attributable to flow regulation, as well as natural flow in each GHMs

H: Hoover Dam

Fall

Summer

Spring

Winter

Seasonal discharge (regulated)

- Larger discrepancies in regulated seasonal discharge are also seen in upper reaches
- If models show good performance at the river mouth, the models do not always perform well in other river streches

Different magnitude of flow regulation among GHMs

- Strong regulation
 H08, LPJmL, (WaterGAP)
- Weak regulation
 - DBH, PCRglobwb

<u>Possible reasons</u>

- Differences in inflow without human interferences
 - reflecting land model characteristics (e.g., runoff)
- Differences in dam operation schemes
 - generally are a function of inflow, requirement and storage
 - most models adopted Hanasaki et al. (2006)'s scheme
- Differences in initial storage (at the beginning of a hydrological year)

Conclusion

- The magnitude of dam regulation differs considerably among GHMs
 - The differences are attributable not only to dam operation schemes but also to the natural inflow to dams
- Intermodel discrepancies are less significant toward the lower reach
 - Intermodel comparison should be made in the upper reach, as well as in the lower reach

Problems to be solved for future model comparisons

- Dam location
 - Inconsistency in dam location among GHMs

Thank you for your attention

ymasaki@hirosaki-u.ac.jp