

Impact and Adaptation Assessment of Climate Change on Rice Production in Indonesia

23rd AIM WS@NIES 28 Nov. 2017

Yuji MASUTOMI

Ibaraki University

Collaboration with

Funded by

Ministry of the Environment

Background

• Mr. Abe, the prime minister of Japan, promised to support adaptation planning and actions in developing countries in his speech of the UN Climate Summit 2014

• "Japan's Adaptation Initiative"

- Indonesia was selected as the first country implemented the initiative.
- A Japanese research team was organized and the project has started in Jun. 2015.
 - three year project (until Mar. 2018)
 - will be extended...

@UN Climate Summit 2014

Mr. Abe

Objectives of our activity

- Support regional adaptation planning
 - in collaboration with local researchers and stakeholders
 - ① create scientific evidence on regional future CC impacts
 - (2) develop effective adaptation scenarios
- Capacity building for sustainable planning and actions on adaptation
- Develop adaptation planning guideline
 - to apply our approach to other countries and regions

Team members

• The University of Tokyo:

✓ Coordination of the and communication with MOEJ
 ✓ Impacts assessment on health impact

National Institute for Environmental Studies (NIES):
 ✓ Future climate projections based on climate models

Ibaraki University:

✓ Impact assessments on agriculture

NIPPON KOEl

Challenging mind, Changing dynamics

• Nippon Koei:

Overall coordination and guideline development
 Impact assessments on water resources

BOGOR AGRICULTURAL UNIVERSITY Chaunhang and Cherning The Rest

Local consultants (Profs. Pasaribu and Osawa): ✓ Support and coordination of field survey etc.

Udayana University

Approach : "Interactive"

1st step: Impact assessment

Method

Selection of future climate projections

Indonesia (whole)		We	estern Indonesia	Ce	entral Indonesia	Eastern Indonesia		
N°	Climate Model	N° Climate Model		N°	N° Climate Model		Climate Model	
1	ACCESS1-0	1	ACCESS1-0		ACCESS1-0	1	BNU-ESM	
2	BNU-ESM	2	ACCESS1-3	2	BNU-ESM	2	CanESM2	
3	CNRM-CM5	3	BNU-ESM	3	CanESM2	3	CNRM-CM5	
4	FGOALS-g2	4	CNRM-CM5	4	CNRM-CM5	4	GFDL-CM3	
5	GFDL-CM3	5	FGOALS-g2	5	FGOALS-g2	5	GFDL-ESM2M	
6	GFDL-ESM2M	6	HadGEM2-AO	6	GFDL-CM3	6	HadGEM2-AO	
7	IPSL-CM5A-LR	7	IPSL-CM5A-LR	7	GFDL-ESM2M	7	inmcm4	
8	IPSL-CM5A-MR	8	IPSL-CM5A-MR	8	IPSL-CM5A-LR	8	IPSL-CM5A-LR	
9	IPSL-CM5B-LR	9	IPSL-CM5B-LR	9	IPSL-CM5A-MR	9	IPSL-CM5A-MR	
10	MIROC5	10	MIROC5	10	IPSL-CM5B-LR	10	IPSL-CM5B-LR	
11	NorESM1-M	11	MIROC-ESM	11	MIROC5	11	MIROC5	
		12 M	MIROC-ESM-CHEM	12	MRI-CGCM3	12	NorESM1-M	
		13	MRI-CGCM3	13	MRI-ESM1			
		14	MRI-ESM1	14	NorESM1-M			
		15 NorESM1-M						

- We selected 6 climate models with high performance over Indonesia
 - 1. CNRM-CM5
 - 2. IPSL-CM5A-LR
 - 3. IPSL-CM5A-MR
 - 4. IPSL-CM5B-LR
 - 5. MIROC5
 - 6. NorESM1-M
- 21 future climate projections
 - Each model has 2-4 RCP scenarios

②Impact model

Crop growth simulation model based on crop physiology (Masutomi et al. 2016a,b)

Local rice cultivars

	Cultivars	Planted area(ha)	%	type				
1	Ciherang	5,034,657	37.1	Indica				
2	Mekongga	1,135,893	8.4	Indica				
3	Situ Bagendit	1,013,659	7.5	Indica				
4	IR 64	964,241	7.1	Indica				
Source IAARD								

We focused on "Ciherang" in this study

Ciherang

Model Parameterization for "Ciherang", using field experimental data

Irrigation	No Irrigation					
O N0	<mark>O</mark> N0					
🛆 N60	🛆 N60					
× N120	× N120					

Comparison of yields between observations and simulations by provinces

3Output Change in Rice Yields [%]

Assessment years: 2018-2042

Increase

Impact assessment of global warming on rice yield

2nd step; Discussion with stakeholders

The objective of the discussion

• To prioritize adaptation options, based on the impact assessment

- The effect of the prioritized adaptation options are assessed in Step3.
- We had two workshops with stakeholders.
 - Mar. 7, 2017@Medan, North Sumatra
 - Mar. 9, 2017@Surabaya, East Java
 - about 30 participants
 - BAPPEDA, BMKG, university researchers, etc.

Menu for adaptation options on agriculture

No	Menu				С	Cost	Effect	Actor				
								Gov.	Scientist	Farmer	Company	
1	Change in	variety (existing variet	Easy	L	OW	Low			٧			
2	Change in (e.g., plant	agricultural managem ing date, fertilizer, etc		L	OW	Int.			V			
3	Change in planting crop				L	OW	Int.			V		
4	Real time monitoring system				h	nt.	Int.	٧	V		(√)	
5	Early warming system				h	nt.	Int.	٧	V		(√)	
6	Seasonal forecasting system				h	nt.	Int.	٧	V		(√)	
7	Climate an	Climate and agricultural insurance			iı	nt.	Int.	(√)		V	V	
8	8 Change in variety (new variety)				h	nt.	High	V	V	V	V	
9	9 Change the postharvest system				h	nt.	High	V		V	V	
10	10 Development of irrigation system				Н	igh	High	٧			٧	
11	11 Land use change			Difficu	ilt H	igh	High	٧			V	
Category : Agricultural technology		ICT a	T and smart agriculture			Agricul finan	tural ce	Infras	Infrastructure			

Discussion....

Summary of the discussion with stakeholders (Step2)

No	Menu			Cost	Effect	Actor				PRIORITY	
				0000	20000	Gov.	Scientist	Farmer	Company	NS.	EJ.
1	Change in variety	(existing variety)	Easy	Low	Low			V			5
2	Change in agricul (e.g., planting dat	tural management e, fertilizer, etc.)		Low	Int.			V		4	1
3	Change in plantin	g crop		Low	Int.			V			
4	Real time monitor	ring system		Int.	Int.	V	V		(√)	5	
5	Early warming sys	stem		Int.	Int.	V	V		(√)		4
6	Seasonal forecast	ting system		Int.	Int.	V	V		(√)	2	2
7	Climate and agric	ultural insurance		int.	Int.	(√)		V	V		
8	8 Change in variety (new variety)			Int.	High	V	V	V	V	3	
9	O Change the postharvest system			Int.	High	V		٧	V		
10	0 Development of irrigation system			High	High	٧			V	1	3
11	1 Land use change		Difficult	High	High	V			V		
Category: Agricultural technology		ICT ar agric	nd smart culture		Agricultur finance	ral	Infrast	ructure]		

Step3: Adaptation assessment

Validation with field experimental data

MATCRO can accurately simulate the effect of irrigation.

The effect of irrigation in the future

- The effect of irrigation is positive over Indonesia.
- The effect of irrigation is largely different across regions.
 ➤ This information is useful for developing effective adaptation plans.

- 1. The Japanese research team is trying to support regional adaptation planning in Indonesia.
- 2. The results show global warming will have large impact on rice production over Indonesia.
 - Average change in rice yield will be -7.4%
- 3. The installation of irrigation system will positive effect over Indonesia, but the effect is largely different across regions.
- 4. We will develop effective adaptation plans through discussions with Indonesian stakeholders

Thank you for you attention

Enjoy Tsukuba!

Nov. 26, 2017